Monthly Archives: January 2019

How Technology and Data Is Improving Wastewater Treatment

Since government water quality standards were required, water is nothing like your ancestors experienced. Still, there are improvements that can be made. Using data and technology, wastewater treatment engineers continue to make strides to ensure that people throughout the world have clean, safe water.

A Brief History of Water Treatment Practices

Civilizations like Ancient Greece, Ancient Egypt, and Mesopotamia all strived to dispose of human waste to keep water sources clean. In the United States, Hans Christopher Christiansen helped launch the nation’s first public water department in Pennsylvania in 1755.

Baltimore, Maryland, and Boston, Massachusetts, were the first two cities to create municipal water treatment plants. Diseases like cholera were running rampant. These did not come into fruition until the mid-1800s. It wasn’t until the 1910s that chlorine was used to sanitize water. World War II led to new discoveries on treating water to make it clean and safe.

Surprisingly, despite the advancements, the U.S. government did not pass the Safe Drinking Water Act until 1974. At this point, tests were used to make sure the levels of certain contaminants were monitored and maintained.

Understanding How Wastewater is Processed

Wastewater is the water that travels through sewers or is trucked in after septic tank cleanings. It comes from washing machines, dishwashers, sinks, bathtubs, showers, and toilets. In a sewer, it also contains water that drains from streets on a rainy day or when the snow melts.

Wastewater contains everything from soap and cleaners to food scraps and human waste. It can be the water that comes from an industrial setting like a paper mill or manufacturing plant. For this water to be reused or returned to lakes and streams, it needs to be filtered and cleaned.

Cleaning wastewater requires multiple steps. First, the solids need to be filtered out. The remaining water, known as effluent, continues going through smaller and smaller screens that keep filtering the grit. That grit is disposed of in landfills and other facilities that can process it.

Aeration adds oxygen that can help break down gases and assist materials in the effluent as they decompose. This secondary step continues to help get rid of grit and other materials.

The third step is to help separate the sludge and scum from the wastewater. Sludge settles at the bottom is moved to digesters. Scum, such as oils and plastic materials, float to the top of the tank where mechanical rakes remove them.

Filtration is a fourth step that helps remove bacteria by running the wastewater through sand or carbon filters. In addition to removing bacteria from the water, iron is also removed.

In the final step, the filtered water is moved to tanks where chlorine helps kill off any remaining bacteria. As the chlorine destroys remaining bacteria, it also breaks down leaving minute traces of the chemical. At this point, it’s ready to enter rivers and become part of a natural water source again.

How Do Data and Technology Help?

Computers have become an important component in wastewater treatment. Not only do they help with research and data, but they also run the CAD software that can help design the right system for your needs. Once the blueprints are in place, you’ll be able to pick the equipment you need. Field engineers have the training and hands-on experience to make sure installations of entire systems go smoothly. If there are hiccups, the engineers are on-hand to figure out and implement a solution.

The EPA maintains the Industrial Wastewater Treatment Technology Database to make it easy to find Clean Water Act rules and guidelines. This resource helps make it easy to research the latest advancements, which can help companies hone their wastewater practices. You can search by topic, industry, pollutant, technology, or download the entire database.

Technology alone has led to many advancements in productivity and operational costs. Wastewater treatment systems of the past relied on humans to manage many of the controls and processes. While today’s computers can adjust the flow rate of wastewater and clean screens, humans once had to carefully monitor and manage those aspects.

Motorized rake systems remove oils, plastics, and other trash now, but humans used to have to rake these materials out. Screens are cleaned automatically. Computers can take readings, store them for management to use, and this makes it easier to manage overall costs and expenses.

Lakeside Equipment has been helping with wastewater treatment since 1928. Engineers and other wastewater specialists work with companies to create effective water treatment systems. The company can keep operating costs down and ease maintenance and repair requirements. Complete the online form to talk to a customer service representative.

How A Hauled Waste Receiving System Works

Hauled waste, according to the Environmental Protection Agency (EPA), is waste that is comprised of sewage, domestic waste, non-domestic waste, or a combination of both types of waste. Some types of waste are toilet waste and domestic septage, ground water, sand or grease traps, restaurant grease, wastewater from drilling processes, and pass through from landfills. Hauled waste is generally transported by a hauler system which is discharged to a public facility, often known as a Publicly Owned Treatment Works.

Depending on where you live, your home is likely connected to either the city’s sanitary sewer collection system, or you may have an in-home septic system. A septic system is a highly efficient, self-contained, underground wastewater treatment system. The tank is a water-tight box that is connected to a pipe which connects to the public sewer system. Within the tank, solids are separated from wastewater, and the wastewater is what flows into the pipe that is connected to a drainfield of pipes that flow to the public system.

On the receiving end, the waste is received by a hauled waste system. This system works by removing debris and inorganic solids from all of the forms of waste, such as the domestic waste, restaurant grease, residual landfill solids, and other waste. A machine, which is the primary component of the hauled waste system is a piece of equipment that handles the waste with its screens which filter the waste. Some of the machines have cylinders with rotating screens, and various other mechanical functions that work to ensure that grease, grit and small debris don’t plug everything up. In some cases, a separate, additional grease trap might be connected to the main machine for added support. As a part of the process, the waste that is screened is essentially compacted, dewatered and reduced to a cleaner solid.

One problem that often occurs with hauled waste systems is that the waste is more concentrated and therefore is not equally distributed; this can cause several septage and maintenance problems. With a higher concentration, the screening process becomes more tedious, which reduces overall efficiency and has the likelihood to slow down operations. For these reasons, it is necessary to have a hauled waste system that is able to control for large amounts of waste for maximum functioning. Having a fully automated machine that has the capability to screen and filter large amounts of waste without being overburdened allows the waste to be unloaded more rapidly. The waste gets unloaded into a septic acceptance plant or waste hauler.

During the process of hauled waste removal there is a potential for contamination. Contamination may occur due to hazardous waste materials that Publicly Owned Treatment Works come into contact with, and this is certainly something to consider. To avoid contamination, maintenance or facility issues and any other adverse effects, a system that is designed to handle heavy solid loads and high grease concentrations, for example, is required. This can be obtained by using a high quality water treatment system. Of course, following the appropriate safety guidelines are compulsory.

The Environmental Protection Agency suggests these specific controls regarding the discharge of waste.

  • applying limits to non-domestic hauled waste,
  • issuing permits to waste haulers,
  • implementing tracking systems,
  • sampling loads, and
  • refusing all hauled waste.

As mentioned before, a high quality water treatment system is necessary. Not only does it take into account the above suggestions, but also offers these components and advantages:

  • Compact design with screening and grit removal in one unit
  • Security control station allows access for authorized haulers
  • All stainless steel construction resists corrosion
  • Available for indoor or outdoor environments
  • Multiple sized units to suit your application
  • Unload up to two (2) waste haulers at the same time

At Lakeside Equipment Corporation, we have considered how to manage a maximum efficiency water treatment system. We are proud not only of the individual components of our hauled waste systems, but of the full service we provide with it. Lakeside Equipment Corporation has customer specific designs to meet your unique needs, the latest in CAD-based engineering designs, experienced field service engineers to help with on-site installations, locally authorized service personnel to contact on a daily basis, and parts and inventory ready to ship when you need it. We also offer an option for dual inlets to allow two haulers to unload at the same time. Keep in mind that a pre-engineered design reduces engineering costs. Our integrated designs allow haulers to unload faster than any haulers on the market — again, creating maximum efficiency. Contact us today so we can assist with your waste removal needs!