Understanding Food and Beverage Wastewater Solutions

Many companies in the food and beverage industry create massive amounts of wastewater each day. Take beer for example. A pint of beer is around 95% water, but far more water is used up making that pint of beer. It’s estimated that you need as much as seven gallons of water to make one gallon of beer. Of that, about 70% of that water is discharged as wastewater to city sewers.

Now, think about it this way. The entire U.S. beer industry sold just over 203 million barrels of beer during 2019 One barrel is about 31 gallons, so about 6.29 trillion gallons of beer were sold in 2019. That means more than 44 trillion gallons of water were used to make all of that beer and an estimated 30.8 trillion gallons became wastewater.

That’s just the beer industry. If you think about all of the other food and beverage industries that produce wastewater, it’s easy to see how problems arise. If you have a wastewater district that accepts wastewater from the area’s breweries, meat processing plants, dairy plants, wineries, etc. that’s a lot of liquid. Too much poses the risk of overwhelming a plant. If the wastewater is released before it’s treated, it can harm the area’s wildlife and increase pollutants in area water sources. This is why it’s so important for the food and beverage industry to carefully consider wastewater solutions.

What’s in Your Wastewater?

You need to consider what’s in the effluent you produce. Wastewater treatment plants must meet local, state, and/or federal guidelines on the contaminants in water that’s released. Bacteria like coliform must meet the maximum levels. Restrictions are also in place for things like biological oxygen demand, chemical oxygen demand, phosphorus, nitrogen, and total suspended solids.

Breweries often produce high levels of nitrogen and phosphorus. That’s the first part of the problem. Grains and hops must be filtered to prevent them from clogging lines. Plus, the gritty grains can damage equipment. There’s also the sludge from the yeast. If you’re a contributor to the higher levels of suspended solids, bacteria, and nutrients, you may pay sizable fees to be connected to that wastewater district.

A plant that processes poultry, pork, or beef may contribute to higher coliform counts due to the animals’ intestinal tracts and feces that are removed and rinsed from the floors. Ammonia counts can be higher with larger animals that urinate on the floors. Fat from the animal and its blood also poses a problem.

Dairy plants that make cheese or yogurt have bacteria that are flushed away at the end of the production cycle. Like a meat processing plant, there are also fats and greases to consider.

How Can Companies Better Manage Their Wastewater?

If you look at the amount of water used by many companies in the food and beverage industry, it’s substantial. The amount of wastewater produced is also immense. It often becomes cost-effective for companies to recycle their water for reuse or start the cleaning process before the effluent goes to a local wastewater treatment plant. These companies have implemented wastewater solutions within their businesses.

Alchemist Brewery in Vermont

Take Alchemist Brewery in Vermont for instance. The popularity of Heady Topper and Focal Banger had people coming from around the world to try the beer. When the demand became too much at their second facility, they decided to open a visitor’s center in Stowe and open a cannery in Waterbury. The brewery has a lot of organic matter from the yeast, hops, grains, and malt sugars. They started sending them to Vermont Technical College’s anaerobic digesters to create energy and fertilizer for area farms.

At the same time, the visitor center had room for the brewery to put in its own water treatment system. The wastewater goes into a settling tank before going to the pumping tank. Solids go to an aerobic digester where as much as 6,500 gallons are treated each week. The water that’s sent back to the water district is already cleaned, which lessens the impact on the wastewater treatment plant.

Two Cheesemakers Install Their Own Wastewater Treatment Plants

Cheesemakers process a lot of cream and milk with cultures that turn it into curds and whey. Those curds become some of the cheeses people buy at specialty shops and grocery stores. Not only is water consumption high, but the whey and bacteria become a lot for a water treatment plant to process. Rothenbühler Cheese aimed to solve this by adding an on-site water treatment plant.

A few years ago, Rothenbühler Cheese hired a wastewater treatment expert to design and install an anaerobic wastewater treatment system containing pumps that send the wastewater to a digester tank. It continues to a membrane bioreactor. The biogas that’s produced during water treatment is captured and used in the plant’s dual-fuel boiler.

Montchevre is another cheesemaker that installed an anaerobic digestion system after weighing the pros and cons of anaerobic digestion and sequencing batch reactors (SBR). This system cleans the wastewater and produces electricity from the resulting biogas at the same time. While you might think the cost of installing such a system is expensive, they were able to use special funding programs from the government to afford the upgrades.

Sometimes Wastewater Districts Must Expand

Some wastewater districts expand their treatment plants instead. In North Carolina, production at the Tyson chicken processing plant steadily increased, but that also put the wastewater district at max capacity. Heavy rains were putting the plant at risk of releasing untreated effluent, which is not ideal. While the district has no restriction on the amount of wastewater that can be released into the area river, there are limits on the biological oxygen demand.

To resolve this problem, the town officials decided it’s time to upgrade the wastewater treatment plant to make sure that the equipment does an exceptional job of treating the water. With a plant expansion, the district cleans the water, releases it to the river, and doesn’t change the biological oxygen demand. Experts in wastewater treatment will help design the upgraded system.

If your town needs to look at increasing capacity, it’s important. Recover the cost by working with area food and beverage manufacturers to upgrade and enlarge your wastewater treatment plant.

What if You’re Short on Space?

A Package Extended Aeration Treatment Plant is a good solution for those in the food and beverage industry. It has a compact design, which is ideal for a company that doesn’t have a lot of space available.

What does this all-in-one water treatment system include? It’s designed to screen, aerate, clarify, disinfect, and contain sludge in one tank. This makes it very easy to install. You get a Closed Loop Reactor Process where the mixing and extended aeration take place in an outer loop before it goes to the inner Spiraflo Clarifier for the final settling process.

Is your water district looking for ways to be more cost-effective and efficient? Do you own a food or beverage company? If you think an on-site treatment plant could help your impact on your area wastewater treatment plant, see what it would take to build your own small plant. You may find you save money by reducing or stopping the fees you pay to be part of that district.

Lakeside Equipment’s specialists help design systems of all sizes. Let us know what your goals are and what budget you have. We’ll help you establish a wastewater treatment system that matches your needs.

How Data & Analytics Can Improve Industrial Wastewater Operations

Industrial waste is cleaned before it is sent back to your company’s production lines, a local water source, or allowed to enter city sewers to go for treatment in your local waste district’s water treatment plant. As the wastewater produced in different industries can be full of pollutants, treating the water is important. The food industry may have high levels of ammonia, fat, and coliform bacteria. Power stations can have high levels of heavy metals. Treating water from these industries must be done correctly to prevent harm to people or the environment.

Managers and owners of industrial operations must carefully monitor and analyze each aspect of wastewater operations. Why? It’s important when it comes to your company’s bottom line. You need to make sure wastewater is treated effectively. You don’t want to risk releasing untreated overflow or water that doesn’t meet current guidelines for some reason. Fines for the release of untreated or poorly treated water can be costly both in terms of money and in damage to your company’s reputation. You also need to make sure you’re not wasting money on inefficient operations and excessive maintenance.

Optimizing industrial wastewater treatment is best done by paying attention to the data your systems collect. Use your operational data to look for trends and patterns in all stages of the wastewater treatment process. If you have updated wastewater equipment, it’s easy to capture data and analyze it. From there, you can predict trends, optimize your processes, and get the best practices in place for efficiency and cost-effectiveness.

What Can You Learn From Data Collection and Wastewater Analytics?

What can you learn as you analyze your data? There’s a lot to be learned. An efficient wastewater treatment plant is one that handles the highs and lows, doesn’t require a lot of maintenance and repairs, and provides real-time reports to ensure water meets standards before it’s recycled or returned to a body of water. Through predictive analysis, you should be able to get a better understanding of these five areas.

First, you’re able to see what equipment is not operating as well as it can. If you have machines that are often down for maintenance, it’s costing you money. It’s impacting your wastewater treatment processes. You’ve collected data and find that one piece of equipment struggles to keep up with flow rates. Upgrading may be what it takes to have a more productive wastewater treatment system.

Second, you can track energy usage and flow rates. There may be specific times of day that wastewater rates slow down and other times when they peak. If pumps are operating at the same speed during all of these changes, it’s wasting energy. You can cut energy costs by creating systems that better accommodate the highs and lows.

Third, you’ll see where chemicals are used and if they’re being overused or not used enough. This helps keep your chemical costs to a minimum while also meeting the requirements for the water quality being released to a body of water or reused.

Fourth, you can look at the wastewater you do have and see if there are better ways to reuse it or clean it for release into the environment. Recycling wastewater is one of the best ways to keep costs down. If you could reuse water several times, you’re saving money on water bills. You don’t want dirty water impacting production. Data and analytics help you find the right balance.

Fifth, the other benefit to analytics in wastewater treatment has to do with your equipment. Say you’re seeing data that shows one pump is often breaking down and needing maintenance. You can see how much extra time and money is being spent on repairs. You’ll know if the equipment is still worth keeping or if it’s time to replace it.

How Do You Collect the Data You Need?

Of course, there are hurdles companies face when collecting the information. If even one piece of equipment isn’t connected and communicating with the others, data will be missing. That makes it hard to get a complete picture of the treatment process and quality. Data management tools that connect everything become essential. You may need to invest in additional training so that you and your employees understand what the data means and how to use it to your advantage.

You’re probably already taking the first big step in collecting data at each key point of your water treatment measures. If you have a SCADA system like many industrial settings, you have access to important data. You’re seeing the flow rates as water comes into the screens and grit collectors. You get measurements of the pollutants in the water that’s being treated. Before it’s released, you can see the numbers and make sure they meet federal and state standards. Pair the SCADA system with modern control systems and you have all of the information you need to start analyzing your plants’ processes.

A Sharp Biological Nutrient Removal (SharpBNR) control system helps you monitor your system and adjust aeration as needed to balance the oxygen levels in the wastewater as it’s treated. The computerized control system continually monitors the system status and makes adjustments. Alarms go off if there are problems beyond the system’s scope.

SharpBNR can be partnered with your plant’s SCADA system. Within a SCADA system, you have sensors taking readings at different pieces of wastewater equipment. Readings typically include measurements for flow rates, suspended solids, pump speeds, and Dissolved Oxygen. Those readings are shown on a screen for supervisors and operators. Each screen, grit pump, basin, etc. shows yesterday’s flow and today’s flow. That data can be analyzed to look for unusual changes and peak hours.

As your system begins to analyze the numbers, it learns the necessary adjustments to effectively manage each component. You can also add motor starters and Variable Frequency Drives with the SharpBNR for optimal management. As this information is available from any authorized and connected computer terminal, you can monitor readings from your office and get alerts wherever you happen to be at that moment.

What does that mean? The system is going to be more reliable than it has been because the computer can monitor several components at the same time. Instead of having workers in different areas communicating what they’re seeing, the computer has all of the information in real-time. Adjustments are made by the computer, which continues monitoring the changes and making small adjustments until everything is running smoothly. That reduces energy costs at the same time.

You do need to keep the sensors clean so that the data that’s returned is accurate. While your maintenance team may not be doing as much on repairs, remember they’ll be beneficial at cleaning and calibrating older sensors. This ensures you have accurate information to use as you analyze your industry’s water treatment processes.

SCADA systems are great at real-time tracking and giving warnings of problems as they come up, the systems don’t do as well at predicting future problems weeks or months in advance. Smart analytics fills this gap. Analyzing the data carefully is one way to predict machines or components that are reaching their end-of-life stages.

How modern is your equipment? Would upgrading help you? If your older wastewater equipment lacks some of today’s computerized controls, it can turn data and predictive analytics into a time-consuming task. Talk to Lakeside Equipment about your current set up and learn ways to make your industrial wastewater operations more cost-effective and efficient.

Ways to Reduce Operator Time Spent on Wastewater Operations

In 2019, the median pay for wastewater treatment plant and system operators was just under $23 an hour. It’s an important job, but it’s also imperative that districts try to manage costs for the residents and businesses in that area. Optimizing your workforce is an important step, but it’s just the first step to take.

There’s another reason to optimize your employment strategies. The recent pandemic is forcing wastewater treatment districts to make sure employees are spaced for social distancing. With a goal of six feet, careful planning is important. Plus, some workers may be unable to return to work if they have COVID-19 or are caring for someone with the virus. Thought needs to go into the adjustments that keep the right staffing levels without sacrificing productivity.

How do you best manage your employees and make sure the time spent on wastewater treatment operations isn’t wasted time? How do you optimize your operator’s time? These are the best ways to cut costs without sacrificing work quality.

Evaluate the Strengths and Weaknesses in Your Current Wastewater Treatment System

Complete a thorough site review. Look at the equipment you have in your wastewater facility and track flow rates, the amount of maintenance that’s performed each week, month, or year, and how old it is. See how many hours the equipment is at peak flow rates and when the wastewater isn’t coming in as fast. In many communities, morning showers and dinner hours are going to be the busiest. See if that matches up with what the operators experience each day.

Take time to ask the operators of that equipment how comfortable they are and if they encounter frequent issues. If there are problems, what has to be done to fix them. How many hours are operators spending on fixing issues or waiting for maintenance? Now, ask them how much time they spend sitting back and monitoring the different processes. This impacts productivity.

Look at the growth in your district. If the population has increased by 20% in the past couple of years, you have to consider how well your system can keep up with the growth. It could be time to rethink things and plan a major upgrade.

Is weather impacting the amount of wastewater entering the system? Has winter snow accumulation drastically increased over the past decade? Are sudden downpours or an increase in hurricanes more frequent than in the past? You can’t control the weather, but you can design a system that handles the unexpected and more frequent stormwater rushing into the plant.

Put Extra Time and Energy Into Training

Productivity also relies on the employees you have. Operators need to know what they’re doing and how to accommodate any surprises that pop up during the day. If you run into employees who seem to struggle more than others, they may just need some additional training. Look into workshops for them or put them with your best worker to hone their skills.

People learn at different rates. What took one operator a week to learn may take someone else two weeks. Try not to rush workers who are doing their best. If you train them too fast, they’re more likely to make mistakes. Operators who are pushed to learn quickly and don’t feel supported may just walk away. Can you afford to lose an employee and have to start from scratch?

On the other hand, you don’t want to waste time training a worker who is more interested in checking a phone than working. You should take time with someone who is trying hard to master the equipment, but you need to know when it’s a lost cause. Try to spot the dedicated employees from those who simply want the money and aren’t willing to put in an effort. The quicker you can weed out the good from the bad, the more time you’ll be able to dedicate to training the right people.

Embrace Automation and Real-Time Monitoring

When your operators are spending a lot of time fixing issues and manually changing settings, it wastes their time. Embrace automated wastewater treatment equipment that uses modern technology like real-time monitoring and adjusts settings automatically. You still need wastewater treatment plant operators, but they have a helping hand in meeting efficiency goals.

You want a system with real-time monitoring. When equipment points out problems at the exact moment they happen, it’s far more helpful than learning that something’s wrong as wastewater backs up or exits the plant before the raw sewage is properly treated. Untreated raw sewage during heavy rainfall or flooding isn’t ideal and can lead to fines. Real-time monitoring adjusts for increased flow rates and makes changes accordingly.

Computers help operators with efficiency and water treatment quality. Look for equipment that has computerized systems that can handle the routine tasks and alert the operator to potential problems before things get really bad.

Use the Sharp Biological Nutrient Removal (SharpBNR) process control system to monitor and optimize aeration rates during wastewater treatment. If more aeration is needed, the computer automatically adjusts rotor speeds. If aeration can be slower, again the computer will take care of it. SharpBNR is easily paired with SCADA to make sure water treatment processes are meeting goals. The system is designed to send out alerts and alarms as warnings of issues to make sure nothing gets overlooked.

Upgrade to Low-Maintenance Equipment

It’s a good time to look at upgrading older equipment with equipment that doesn’t require the same amount of maintenance. You’ll save money on maintenance, have less downtime, and increase productivity. Your maintenance team may not need to be as heavily staffed, and you’ll be able to transfer workers to other areas where they’re needed.

Start with the screw pumps. Depending on your plant’s size, you may need to save space with a Type C Enclosed Screw Pump. If you have plenty of space, an Open Screw Pump may work better. Your key consideration needs to be clog-free designs that improve efficiency.

Screening products are another component in wastewater treatment plant efficiency. The Raptor Multi-Rake Bar Screen uses a set of rakes to get into the screen’s openings to remove debris quickly and completely. This system is designed to be low maintenance and goes into reverse to free up jams.

Those are good places to start. Look at your list of current wastewater treatment equipment and see what’s older and going through frequent repairs. Upgrading that equipment is ideal. If it’s simply not in the budget, replacing worn parts is the second-best option. Energy-efficient motors and pumps will make a difference.

Partner With an Expert

When it’s decided that you should upgrade or replace equipment, select engineers and installers who will make sure your system meets your budget and exact needs. Choose your partner in wastewater treatment upgrades carefully. You need to balance costs with expertise, and some companies just don’t have the same experience as others.

Have you considered having experts walk through your wastewater treatment plant and offer suggestions for optimizing your system? It’s a good place to start. Lakeside Equipment’s engineers design efficient, cost-effective systems that are customized to a client’s needs.

Lakeside Equipment’s foundations go back 92 years. Our experts have helped communities across the U.S. plan, engineer, and maintain their water treatment systems. We provide quality wastewater treatment equipment that’s designed to meet your budget and operation goals. Give us a call to discuss your needs.

Wastewater Treatment Plant Energy Efficiency Tips

How do you make your wastewater treatment plant energy efficient? It’s estimated that upwards of 60% of a plant’s operating expenses are electricity costs. The EPA believes that around 4% of all U.S. electricity usage occurs in wastewater treatment. It also results in over 45 million tons of greenhouse gas emissions. Before taking any steps to improve your plant’s efficiency, look into an energy audit. It will help you create a blueprint of what equipment uses the most energy. That gives you the important first step into figuring out where to upgrade equipment and technology in order to cut costs.

Once you’ve completed an audit, pay attention to energy use from one week to the next. Are there extreme increases in usage? Do they happen as expected in the morning rush when people are getting to school or work and again at night when people return home? Those increases are expected. If you’re seeing a drastic increase at 2 a.m., there could be a problem that needs to be addressed.

While upgrades and changes to your water treatment system can cost some money, you can’t automatically dismiss it due to the cost. Over the next months and years, the money you’ve spent is likely to be paid back just in savings on your plant’s electricity bills. These are some of the areas of concern and changes you should consider making.

Add an On-Site Renewable Energy Source

Have you thought about investing in a renewable energy source at your plant? Solar and wind are possible options. With grants and solar rebates, it’s possible to pay very little to have this type of system installed.

In a sunny location, solar panels can draw the energy from the UV rays and convert it to electricity. Wind turbines do the same. How well they work depends on your location. If your water treatment plant is located in an area where the sun shines most days, solar energy is a must. Even in areas where there’s a mix of sunny days and rainy ones, you will generate some energy on rainy days, too.

Prineville, Oregon, decided to upgrade the water treatment plant with solar panels. They worked out an arrangement with the city to slash power bills in half. Westlake Solar Panels installed panels on seven acres at the wastewater treatment plant without a charge. In return, Westlake will provide a lower electricity rate that is low enough to cut the wastewater treatment plant’s electricity bills from an average of $200,000 a year to $100,000.

Not every day is windy, but a higher elevation or valley may have consistent breezes. Those winds can turn the blades on a wind turbine and create some of the power needed to run a wastewater treatment plant. If it’s windy in your area, wind turbines are beneficial at cutting electricity bills.

Rhode Island’s Field’s Point Wastewater Treatment Facility received a grant to study wind power. The plant spends about $2.5 million each year on electricity. By spending $14 million installing three wind turbines, estimates were that the plant would save over $1 million each year and also reduce greenhouse gases.

Check for Leaks and Malfunctions and Make Repairs ASAP

You don’t want wastewater lines leaking all over. It lowers pressure and can affect efficiency. It’s also messy and takes extra work to clean up leaks. Broken or malfunctioning equipment is also going to impact efficiency. There’s another important factor to consider. You could be fined if you released untreated wastewater into the environment.

You should be checking your equipment regularly to make sure things are working as expected. If repairs are needed, delaying them can impact productivity, use more electricity, and end up costing you more. A strong maintenance team is a great defense here. If you have a team who are experienced in diagnosing, troubleshooting, and determining when a piece of equipment has outlived its usefulness, you’ll have someone who can quickly get your equipment back up and running and let you know when it’s time to upgrade to something new.

Purchase Systems Controls That Use SCADA Feedback

Supervisory Control and Data Acquisition (SCADA) is a system that analyzes equipment in a plant and uses the data it gathers to tell systems controls what to do using that real-time information. With SCADA managing controls, it makes sure flow rates and pumps and other equipment are in sync to prevent overflows. If something is way off, it can set off alarms and alert workers.

Suffolk County Department of Public Works installed a SCADA system to manage the sewer system in Long Island. Doing so saved the county more than $180,000 each year. In just one year, the system helped Suffolk County reduce emergency calls and allow technicians to stop having to travel miles to inspect over 80 pump stations each day.

Update Lighting Fixtures

Some older wastewater treatment plants still use fluorescent lighting and fixtures that use up far more electricity than necessary. If you upgrade your plant’s lighting to energy-efficient LED fixtures, you can save a lot of money.

Oklahoma’s A.B. Jewell Water Treatment Plant upgraded hundreds of fluorescent, metal halide, and high-pressured sodium light fixtures to LED ones. That cut energy consumption by almost 450,000 kWh each year resulting in an annual savings of $22,000. Plus, the new light fixtures and bulbs were still working perfectly five years later, so maintenance costs were minimal.

Installing Newer HVAC Systems

Some plants have also turned to trapping methane from the water treatment process and using methane for heating. It can drastically reduce heating bills for plants that rely on more expensive heating fuels. Geothermal heating is another option.

In Appleton, Wisconsin, the wastewater treatment plant was heated with cost-effective natural gas. The plant upgraded to a biogas boiler in 2019 and is saving $100,000 in heating costs. It dropped natural gas usage by up to 90%. The cost of the new biogas boiler was just shy of $800,000 and they received a $167,000 rebate for the upgrade. In the end, it’s expected that the savings will pay off the cost of the boiler upgrade in just six years.

Upgrade Aged Water Treatment Equipment

Is upgrading worth the expense? If your equipment is older, there are three reasons to consider an upgrade. One, today’s technology helps plants run at optimal efficiency while using as little electricity as possible. Two, it helps prevent plant overload that leads to raw sewage getting released to the nearby river or lake. Three, older equipment is more likely to break down, which can lead to expected downtime and costly repairs.

Even newer equipment may not suit your needs. If there’s been a rush of growth in your area, you may be straining your system with more homes and businesses than your system was designed to manage. Newer equipment will meet the increased demand.

Older equipment hasn’t been designed to reduce electricity consumption. Newer pumps and blowers help to cut electricity bills. Entire components can increase productivity when needed and turn things off during slower times.

In Green Bay, Wisconsin, they updated the blowers on their aeration equipment in two plants. By switching to energy-efficient blowers, they cut electricity usage in half. The Albert Lea Wastewater Treatment Plant in Minnesota installed a combined heat-power system and saved around $100,000 every year.

Even a small change at your wastewater treatment plant can make a huge difference. Lakeside can help you plan the right upgrades to cut your power bills and help your plant run at optimal efficiency. Reach us by phone or email to discuss your energy-efficiency goals.

How COVID-19 Will Impact Wastewater Treatment

Every corner of the country has been impacted by the coronavirus pandemic. Across the nation, there have been more than 5.75 million cases of COVID-19 and more than 177,700 deaths. It’s alarming to think of how fast this virus has spread during 2020. One area people don’t think about is the impact of COVID-19 on wastewater treatment.

While it might not be something you stop to consider, COVID-19 has impacted the wastewater treatment industry, too. It’s affected wastewater treatment in several ways ranging from increased residential wastewater to clogged pipes and equipment. There’s also the fact that the body does shed the virus through the waste that ends up in the wastewater traveling through sewer lines and into residential septic systems.

The CDC and the U.S. Department of Health and Human Services have started a surveillance program to track the levels of COVID-19 in wastewater. While no one has found evidence of the virus spreading through wastewater (treated or untreated), the virus is present in the feces of those who have the virus. By studying patterns, experts know where they should be looking for COVID-19 clusters and making testing available.

The other reason it’s important for wastewater treatment plants to test for COVID-19 is to keep workers safe. Employees who work in wastewater treatment plans should take protective measures with personal protective equipment and safe practices at work. Doing so can eliminate the risk of contamination from untreated wastewater.

Problems With Clogged Lines and Equipment

One of the problems wastewater treatment plants are facing with the pandemic has been trash in the sewer lines. Around the nation, wastewater treatment plants are facing issues from a large increase in protective gloves, masks, and disinfecting wipes making their way into sewer lines and wastewater treatment plants. People are flushing these items instead of disposing of them in the trash as they should.

Most toilet papers disintegrate in water. It usually takes no more than 24 hours. Wet wipes don’t break down as quickly. They may flush and make it through toilet pipes, but as they travel through the sewer, they can catch on tree roots, curves, and other items and collect other items. Soon, there’s a huge blockage of fat, feces, napkins, tampons, and wipes that isn’t breaking down. It slows down the wastewater’s flow and can lead to sewer backups and spills.

As the pandemic started, toilet paper stocks decreased. Soon, toilet paper shortages were affecting everyone. People were turning to baby wipes, makeup removers, and any other moist wipe they could use in place of toilet paper. Napkins and paper towels were other items people were using in place of toilet paper. Rather than throw them into the trash, as they needed to, they were flushing them. These items do not break down quickly. They were causing clogs in sewer lines and water treatment equipment.

Latex or non-latex gloves and disposable masks were other items getting flushed. Again, they don’t degrade in water, so they were clogging lines. In Washington, a bill was signed making it illegal to flush non-flushable wipes starting on July 1, 2022. In Tennessee, one town’s sewer workers started cleaning sewer pumping stations twice a week instead of once a month. An Air Force base in California has crews working 16-hour shifts to remove clogs from pipes. In Maryland, one wastewater pumping station saw an increase of more than 37,000 pounds of wipes during the first quarter of 2020.

All of this is costing cities and towns a fortune in additional hours and repairs. People need to remember to only flush toilet paper and human waste. Despite the pleas from one side of the nation to the other, people keep flushing things that cause harm. That’s one of the biggest ways the pandemic has impacted wastewater treatment. Grinder pumps and screens are essential to handling all this increased trash, but not every district has the money available to install them.

Increased Wastewater Flow in Residential Areas

With more people working from home, residential water consumption has also increased. A water monitoring company studied water usage and found it increased by about 21% per day. Some cities saw higher increases. For example, New York City’s residential water consumption increased by 28%. In Minnesota, the increase was 25%. People working from home are doing more laundry, using the toilet more, washing more dishes, and taking more showers. People are also washing hands more as is recommended by the CDC.

This increase in water usage means wastewater treatment plants are treating an increase in water. Water treatment plants that treat a lot of water from commercial industries may see decreases, but water treatment plants serving mostly residential structures are facing large increases that older equipment may not be able to handle.

Another change with water usage is when peak water usage is happening. It used to be that most families showered and ate breakfast in time to catch buses/trains and commute to work or school. Families had to have kids ready to get on the bus for the early morning pick-up. Commuters had to be out of the home early to beat rush hour traffic. Wastewater treatment plants expected the highest water flow around 7 a.m. and again around dinner time or 6 p.m.

Without the rush to commute or get to a bus or train, people shifted their morning routines an hour or two later than normal. Peak water usage is now around 9 a.m. instead of 7 a.m. Water treatment plants expect changing flow rates throughout the day and may use computers to speed up or slow down equipment accordingly. Not every plant is set up this way, however. Changes in flow rates at unexpected hours can cause problems. If treatment plants have flow rates that are higher than anticipated, they may have to ask residents to avoid running appliances during certain hours to reduce the strain on older equipment that cannot keep up.

Does Water Treatment Kill Coronavirus?

People who get their residential and commercial water from treated water do not have to worry about the virus still being present. Wastewater treatment processes kill viruses and bacteria. After filtering wastewater, aerating it, and using chemicals to kill any residual contaminants, water that’s returned to bodies of water or put into storage tanks for public water systems. No evidence of COVID-19 surviving water treatment has been found.

What if untreated wastewater makes it into lakes or streams after heavy rains? There is the chance that COVID-19 will be in untreated water, but there has not been any known case of the virus spreading through wastewater spills. Wastewater treatment plants should do everything possible to prevent untreated wastewater spills by making sure their system can handle an increased capacity and repair broken equipment and lines.

Can steps be taken to eliminate the chances of COVID-19 untreated wastewater from returning to the environment? How can plants anticipate changes in peak water flow? What can be done to stop people from flushing their gloves, masks, and wet wipes? Upgrading equipment is key. Older infrastructure needs to be improved to reduce energy consumption and keep up with changes in wastewater flow rates and screening.

Lakeside Equipment is here for districts that need to repair their equipment due to damage from items that shouldn’t be flushed. We can also help districts upgrade equipment to be more energy-efficient or handle an increase in residential wastewater as people are working from home and cooking more meals at home. Reach us by phone or email for more information on a new wastewater treatment system or to discuss upgrades that will save your district money.

What Is a Positive Displacement Pump?

It came out in May that the worldwide market for positive displacement pumps is forecasted to reach $11.25 billion in the next seven years. That’s almost double the market’s value in 2019. Why are these pumps high in demand? What’s driving the increased need for this specific type of pump? There are several factors.

It helps to understand what positive displacement pumps are used for. They remove liquids from discharge pipes. They’re useful in many industries including wastewater, food and beverage, oil and gas, mining, etc. If you have liquid or fluid matter that needs to be moved from Point A to Point B, a positive displacement pump is your answer. Take a closer look at how these pumps help in these industries, what you should look for, and how they work.

A Guide to How Positive Displacement Pumps Work

Pumps move liquids or fluid materials from one area to another. There are axial-flow pumps fluids in one direction. Liquids come in passes through an impeller and travel out the other end. A centrifugal pump changes the flow by using a motor and impeller to create energy that pushes fluids along. The final option is a positive displacement pump that captures an amount of fluid and forces it into the discharge pipe. The benefit is the pump handles a constant volume even if the pressure changes.

These pumps are categorized by their mechanisms:

  1. Linear-type: Chain or rope pumps
  2. Reciprocating-type: Diaphragm, piston, plunger, or radial piston pumps
  3. Rotary-type: Gear, hollow disk, rotary vane, screw, or vibratory pumps

A linear-type of positive displacement pump uses a chain or rope and some form of a plate or even bucket to displace liquids. Go back in time to an ox-powered water wheel. Oxen were tethered to the big wheel and walked in circles. That motion moved the wheel, which moved the chain or rope along a pulley or up and down a drilled or dug well to collect water from deep within the well. Back up at the surface, the motion at the top of the pulley system dumped the water into a discharge chute while the buckets made a new path. Today, they’re more likely to have a chain and disc system that fits within a tube or pipe. As the discs are pulled up through the tube or pipe, water is trapped and is drawn upward.

Next up is a reciprocating type. How it works depends on the type. Think of the old-fashioned well pump. People pumped the handle and each upward pull of that handle drew water up to the discharge pipe. There’s also a piston pump that also uses the upward pull or downward thrust to move liquids. A diaphragm pump is the other type of reciprocating pump. An air bladder (diaphragm) moves up to decrease pressure or down to increase pressure. If you have a private well, you have a pressure tank that helps water flow from the well to the different water lines within the home.

The final main type of positive displacement pumps is the rotary type. There are five types of rotary positive replacement pumps: gear, hollow disk, rotary vane, screw, or vibratory. Screw pumps are one of the types of pumps you’ll encounter a lot in water treatment plants, which makes them one of the more familiar types. You can have an open or enclosed screw pump. They work by having a giant screw within a closed or open chute or pipe. The blades of that screw capture the fluid from a lower pool of liquid, and the motion of the turning screw propels it upwards and to the top of that chute or pipe.

Screw pumps are popular in so many industries and settings. It’s worth stopping to talk about them. You have open and closed. Open is in a concrete trough, and enclosed is in a steel tube. For enclosed screw pumps, there are the Type C or Type S. Type C pumps have two flights (screws) that are welded into the rotating tube. Type S works oppositely with a stationary tube.

While the mechanics vary, the goal of any pump is the same. The mechanics draw in the fluid material on one side, move it through to the next with the help of motors or human or animal power. For the most part, you’ll be relying on motors to power these pumps. If energy-efficiency is vital to your water treatment plan, home setting, or business, you should look at solar-powered or wind-powered electricity to run your pump.

Their Role in Different Industries

That’s the breakdown of the different types of positive displacement pumps. How are they used in different industries? Getting back to the increased need for positive displacement pumps in the next seven years, a driving force in this is going to be the need to find new options for energy. Natural gas is in high demand and is just one of several hydrocarbons that are drawn from the earth using positive displacement pumps. Because drilling and fracking require a lot of pressure, piston pumps that handle the high-pressure situation are often used.

As some look for environmentally-friendly ways to heat their homes and businesses, hydrocarbons aren’t the first choice. Solar and wind power are one choice, but there’s one that is gaining popularity. Geothermal energy needs powerful pumps to move the water from below ground into the building.

You can use these pumps in a geothermal system. Geothermal energy takes the natural warmth found within the earth and uses it for home heating. You pull the warmer water from deep within the ground where it releases that warmth into the house and discharges the cooled water in a continuing cycle. In the summer, geothermal energy helps keep the house cool. The surface temperature is warmer than the temperature deep in the earth. The cooler water is drawn into the home to cool the air and discharges the warmer water back in the ground to cool again. A positive displacement pump can help keep that flow of water from the underground to the building from coming to a stop.

In water treatment, these pumps move the wastewater from the sewer lines or septage station to the next steps in the treatment process. Screw pumps are the common option in a waste treatment plant. If solids like fat balls or fecal matter won’t mess up the screw pump. They’ll move to the next steps where the sludge is separated for processing. Sludge eventually ends up in disposal tanks where it can be dried and composted or taken to a landfill. More homes and businesses mean more of a load. To meet the increased load, water treatment plants are upgrading and increasing capacity. They’re adding energy-efficient measures to lower overall costs. This all starts by choosing the right pumps and water treatment equipment.

In a rice paddy or other agricultural settings where irrigation is needed, positive displacement pumps move water from another water source to your fields or rice paddies. In rural settings, a tractor may be attached to a chain using a chain pump. In a large commercial field that grows everything from corn to wheat, irrigation systems need to be efficient and move a lot of water every day. These settings may use screw pumps to move water from a lower pond or water tank to the elevated fields. Liquid manure needs to be pumped into trucks for spreading.

Pumps also serve a need in the food industry. A plant that makes sausage needs a way to pump the mix of ground meat and spices into the machines that fill casings. A viscous mixture like pasta sauce needs to be transferred from the vats where it’s cooked into machinery that jars it. Food grade screw pumps do this without breaking down as the acidic sauce passes through the pumps for hours at a time.

How Do You Shop for a Positive Displacement Pump?

What are your needs? Archimedean screw pumps don’t clog and can move the liquids and solids wastewater treatment plants handle. Screw pumps are used in sludge pumping, effluent lift stations, and stormwater management. They can help drain land or move water from a water source to elevated fields. Screw pumps are used to move grain in an agricultural setting. They’re also helpful in moving liquids around in wineries and breweries. While your budget is important, it’s also important to have a clear vision of what the pump will do. Do you need the pump that can process foods or one that will be exposed to the outside elements?

You also need to have a clear idea of where the pump is going so that you get the right size. An enclosed screw pump takes up less space than an open screw pump. A Type S screw pump may take up more space because it has a pivoting end. The pump needs to keep up with the flow rate without causing a backup. How much space is there? If there are space limitations, you need to choose a pump that is the right size for the space you have.

Maintenance is the third factor to weigh carefully. Motors in a pump need to be lubricated or they’ll seize. Some units are designed to be maintenance-free, others require a little more care. How much staff and/or time do you have for upkeep? Do you want to make sure bearings are lubricated after months or years of use or do you prefer the idea of self-contained lubrication that is always there? A Type E Sealed Bearing requires little to no maintenance, and if re-lubrication ever is needed, it’s not time-consuming as you never have to remove the bearing.

Do you have time to clean the components, or should the pump be designed to prevent clogs or build-up? A clog-free design is one of the factors that make Lakeside Equipment’s screw pumps the best choice when it comes to maintenance and cleaning. Screen rakes also help keep trash from getting to your equipment.

Choose a specialist in water treatment and hydropower equipment. Lakeside Equipment’s expertise dates back to 1928. We make sure your goals are met by talking about your budget, space, and district. If you’re in an area where the population growth is rapid, a design that considers that growth is important. If you’re looking for equipment that cuts electricity costs, we can help there, too. Give us a call to learn more about Lakeside’s positive displacement pumps.

How Advances in Wastewater Treatment Are Delivering Cleaner Water

Every advancement that a wastewater treatment plant incorporates helps provide people with cleaner water. If you look back through history, the government didn’t address water pollution until 1948. The Clean Water Act wasn’t established until 1972. At this point, there was finally a law with clear guidelines cities and towns had to follow to prevent polluted water from going back into U.S. bodies of water. It led to construction grants for areas that wanted wastewater treatment plants. It started making our water cleaner.

Since that day, water treatment advancements keep happening. The EPA offers guidelines into the pollutants that water districts must remove and test for. If water treatment hasn’t removed enough of the bacteria, heavy metal, or chemical, the public must be notified and told not to drink the water as it’s not safe and changes must be implemented. Water shouldn’t be released to lakes, rivers, ponds, and streams and if it is authorities must be notified.

Early Wastewater Plans

In the 1850s, London’s Thames River experienced what was known as “The Great Stink of 1858.” At that time, human and animal waste was simply deposited back into the river. During a particularly hot summer, that waste caused the river, which flowed past the Houses of Parliament, to reek and politicians left for their country homes because the smell was too much. They all agreed, however, that a new system needed to be implemented. That led to the creation of London’s first sanitation system and close to 100 miles of sewers.

An ABC system was created that mixed sewer water with alum, blood, clay, magnesium, and other ingredients. This mixture moved from one settling tank to the next before being discharged to a river. The problem was that the mixture only started to clean the water. Remaining solids were treated with sulfuric acid to reduce ammonia and used as fertilizer. This process didn’t work effectively and didn’t address the foul odors of the water and solids.

Meanwhile, scientists in Massachusetts started their own experiments using sand filters to purify sewer water. The tests were successful at removing many water-borne illnesses like typhoid. Additional experiments held back in England found that if the remaining sludge was aerated to remove organics and convert any remaining ammonia to nitrite.

Advancements in Water Treatment Equipment

Those steps led to the process of treating wastewater. Equipment is an important part of the process. Grit removal, screening, and oxidation work together to clean water. Water enters a water treatment plant and screw pumps help move it from one area to the next. Screens remove trash and larger objects that cannot be cleaned, such as tampon applicators or plastic wrappers. Sludge settles and is removed. Remaining fluids are aerated and Biological Nutrient Removal takes place to remove nitrogen and phosphorus. What advancements are helping with cleaner water?

#1 – Solar and Wind Powered Plants

One area where water treatment technologies are seeing important advancements are with sustainability. Sustainable water treatment technologies are helping further protect the environment and water sources. Earth.org states that while Earth’s surface is 3% water, no more than 0.5% of it can be used for drinking water. Many people get their water from underground aquifers, but there’s a danger of those drying up in the next 100 years. Reusing water is critical if we are to prevent water shortages. Reusing water requires effective cleaning, which requires power. Solar can help with effective cleaning that minimizes one’s carbon footprint.

Solar-powered water treatment equipment is a trending way to deliver clean water. If you’re harnessing the power of the sun to power a water treatment plant, it reduces the emissions going into the air. You don’t have the soot and smoke from fossil fuels going into the atmosphere that end up in the rain that falls back to the ground. While a water treatment plant will clean some storm runoff, a good deal of it also ends up in rivers and lakes. The acid rain contains nitrogen oxide and sulfur dioxide, which end up in bodies of water and increase water pollution. In addition to solar-powered water treatment equipment, wind power is also being used to eliminate the need for fossil fuels.

#2 – Water Reuse

Going back to water reuse, major companies are starting to understand the importance of reusing water. Nucor Steel realized how much it could cut its water usage by recycling the water they already use and using stormwater instead of cleaned water. These changes have led to a reduction of the water used and lowered its energy bills, too. Water consumption has declined by over 200 million gallons each year with these changes. Cleaner water is saved for homes, and the company’s water needs for cooling the steel products is met by claiming stormwater run-off and rain collection.

#3 – Improved Filtration

Clay, blood, and alum were some of the first filtration materials used. Sand was next. Clean water can also be filtered with charcoal. Most recently, scientists have been using sand coated in graphite oxide to filter water. Water filtered with the graphite oxide-coated sand is five times cleaner than water filtered through sand. It’s an important tool in removing dangerous substances like mercury. They’ve also found that ground plastic bottles that are coated with cysteine are an effective filter for arsenic.

Algae grow easily in water ponds where UV rays are used to kill bacteria. That algae can be dangerous, so it must be killed and removed with chemicals like chlorine and some kind of filtration. Scientists are working on chemical-free ways to kill the algae. One is to introduce bacteria that thrive on algae and break them down into harmless materials that are easily removed through filtration.

#4 – Low-Maintenance or Maintenance-Free Equipment

There’s also an issue with a crumbling infrastructure. Cities need to look at making sure that water isn’t being lost to sewer system water main breaks. Leaks or defective water treatment equipment must be repaired or replaced to prevent water loss. Newer, modern equipment that is constantly monitored by computers and adjusted as flows increase or decrease helps with this.

Smart technology is common in homes, but it’s also being used in water treatment plants for alerts that notify engineers if there is a leak or problem in the equipment. Faster repairs prevent water loss or the release of contaminated water to lakes, rivers, and other water sources. Newer water treatment technology also reduces the need for maintenance by incorporating bearings that are never submerged below water or improving grit removal to prevent damage from abrasion.

#5 – New Equipment Improves Efficiency

Choosing the right equipment is one of the best ways to embrace cleaning water while minimizing your carbon footprint. Have you looked at upgrading your water treatment plant or business with the latest equipment and sustainable practices? Have you thought about going solar at your water treatment plant?

There is an initial cost, but the savings in terms of energy usage and efficiency make that cost worth it. If you’re spending a lot of money on maintenance or repairs, it’s time to talk about upgrading your water treatment equipment. Lakeside Equipment launched in 1928 and strives to help municipalities come up with viable ways to clean water in responsible, environmentally-friendly ways. Call us to discuss your needs for high-quality, cost-effective water treatment equipment.