All posts by admin-seo

How to Improve the Energy Efficiency of Your Wastewater Treatment Plant

The U.S. has close to 14,750 wastewater treatment plans, and they process the wastewater of residential and business wastewater that comes in from sewer lines, but approximately 20% of homes and businesses in the U.S. have septic systems that treat some wastewater within the system and the leach field. Every few years or even sooner, trucks pump out the septic tanks and haul the septage to a wastewater treatment facility.

The EPA estimates that wastewater treatment facilities process around 34 billion gallons of wastewater every day. This is an expensive endeavor when it comes to the cost of repairs, upgrades, and most importantly energy consumption. An estimated $2 billion a year is spent on electricity alone, with as much as 40% of a wastewater treatment plant’s operation budget covering that facility’s electricity bills.

Across the nation, wastewater treatment facilities are setting goals to reduce their energy consumption while ensuring water meets the rigid standards required before the wastewater goes to oceans, ponds, rivers, streams, or water treatment plants for reuse. What are the best methods of reducing energy consumption?

Conduct an Energy Audit

An energy audit is the best step to take to identify areas where you can improve your plant’s efficiency. The EPA Office of Wastewater Management has a self-assessment tool to help you get started. The goals of an assessment are to reduce your energy consumption, reduce your operating costs, reduce water loss, reduce your facility’s carbon footprint, and improve the water infrastructure.

ENERGY STAR also offers energy-saving tips and guidance through the ENERGY STAR Portfolio Manager. If your plant has room for improvement, you’ll get information on what efficiency improvements are going to help and learn more about how to prioritize the improvements. If your plant is efficient enough, you can save as much as 30% in a short time. Many facilities see improvements in just a few months.

Area electricity companies also frequently offer energy audits. You can ask your power company if they have any free energy audits available right now or coming up in the future.

Upgrade Older, Less Efficient Equipment

As you go through an energy audit, you learn what equipment is wasting the most energy. You can work with an expert in water treatment equipment to determine what equipment can help you save money and improve your water treatment process. What equipment should you consider?

A good rule of thumb is to look at the age of all of your equipment. Older pumps and motors are going to use more energy. Once you’ve come up with a chart of this information, consider which machines are down for repairs the most. You need to prioritize those. Here are the items that you should consider first.

  1. Heat Pumps

Heat pumps recover the heat generated during the wastewater treatment cycle and use that heat to preheat water sent to boilers where it requires less energy to heat enough for a heating system or hot water usage. Heat pumps can also help cool your building in hot weather.

  1. Variable Speed Drives

Variable speed drives are available on a lot of wastewater treatment equipment. If you have equipment that is just on or off with no change of speed throughout the day, it’s time to change that.

Your district’s wastewater flow rates increase when people come home from work, have dinner, and do the dishes. They’ve been out of the house all day, so it’s been relatively quiet. But, now that they’re using water for meals and cleaning up, doing the laundry, and taking baths or showers before bed, water usage increases, and that means water is coming into your plant faster.

Variable speed drives adjust for these increases. If water isn’t flowing in very quickly from 1 a.m. to 5 a.m., drives could turn off until they’re needed for higher flow rates in the morning rush to get ready for work or school. They turn off again in the late mornings and afternoons when people are not home. That saves energy and wear and tear on your pumps and other motors.

You’ll also find variable speed drives on a screw pump. These pump liquid from one area to another without easily clogging. Open screw pumps can be up to 75% more efficient while operating and also require less maintenance, which also helps slash your bills. Type C enclosed screw pumps are up to 10% more efficient than open screw pumps.

  1. Submersible Mixers

A submersible mixer stirs up the wastewater in an anaerobic tank while reducing energy consumption. A stainless-steel propeller delivers high flow rates without needing extra electricity to run the motor.

  1. LED Lighting

If your plant has older fluorescent lighting, that type of lighting uses far more energy than efficient LED lighting. Switch to LED, which can be up to 90% more efficient, and see savings on your next bill. The switch to LED won’t cost a lot of money, and some power companies offer rebates and other incentives to help you make the switch.

In addition to LED lighting, consider adding motion sensors that detect when someone has left a room. This way, if a worker forgets to turn off the lights, it won’t matter. The lights will turn off automatically when there’s no movement in the room.

Tap Into Renewable Energy

If your plant isn’t using solar and wind power to help generate electricity, it’s time to consider making a change. There are many programs out there to help you embrace solar, wind, and even geothermal energy for less money.

For outdoor security lights, install solar lights. They have a separate panel that powers the lights by day and runs them all night. They’re helpful as you can install them anywhere and don’t need outlets or a power source nearby.

As your renewable energy system works, you’ll find your savings end up recouping the amount you spent on the system. From there, you gain pure savings that you can reinvest in additional upgrades or use to lower rates for the members in your district. 

Talk to an Expert in Water Treatment 

You’ll find there are many ways to improve your wastewater treatment plant’s energy efficiency, but it takes research and careful planning to make the best choices for your municipality. Work with experts in water treatment. 

Lakeside Equipment has close to 100 years in the water treatment industry. Our dedicated team of sales professionals, engineers, and technicians are here to meet your needs and complete all aspects of your plant’s upgrades from planning to on-site installation. We can even get the parts you need and ship them immediately.

When your wastewater treatment equipment is efficient and repaired quickly, it keeps your bills low while making sure the environment and community are protected from improperly treated wastewater. Learn more about the upgrades you should make to boost your plant’s efficiency.

The Top Challenges Facing Municipal Wastewater Treatment Plants Today

Initial wastewater treatment options in the U.S. involved the use of cesspools or septic tanks with tile drainage, but this was only so helpful as populations increased and cholera epidemics became an issue in cities like Saint Louis, Missouri. By the 1850s, Chicago, Illinois, and Brooklyn, New York, would become the first two cities with official sewer systems. 

In those cities, large pipes collected household wastewater, industrial wastewater, and stormwater runoff to plants where waste was filtered through filters (usually sand) before allowing it to proceed to rivers and lakes. Worcester, Massachusetts, was the first city to use chemicals to treat the wastewater, and it took around 40 years to get to that point.

Over 125 years later, municipal wastewater treatment plants are vital to our lives, yet many plants face incredible challenges. On average, a plant’s lifespan is no more than 50 years. What are the top challenges facing today’s wastewater treatment plants?

Climate Change

Climate change may not impact all wastewater treatment plants, but it can impact some. One of the leading issues is in any district that’s still using a Combined Sewer Overflow (CSO). CSOs are starting to decrease in number, but until a city has the finances to enact the change, flooding can create massive issues with excess stormwater flooding a plant and forcing operators to release raw sewage into the area’s lakes, streams, and rivers.

Another problem is heavy rain that causes flooding that gets into your wastewater treatment plant. Most districts build plants on hillsides or away from shores or river banks. They’re in areas where flooding will not impact the plant, but It’s not always possible. If your plant is in floodwaters, it’s going to wreak havoc on the environment by causing untreated wastewater to mix with flood waters and impact rivers, streams, lakes, and the ground surrounding your plant.

Cybersecurity

Like it or not, the risk of hackers getting into your wastewater district’s systems cannot be ignored. You need equipment that is safeguarded by secure protocols and prevents dangerous cyberattacks. In 2021, three water treatment plants in the U.S. faced ransomware attacks, but manual controls prevented any major issues. Make sure your plant is equipped with security and options where you can manually control equipment if necessary.

Finances

Financial constraints are another factor that can impact your district’s wastewater treatment plant. If you’re not getting grants from government agencies and experiencing increased energy bills and maintenance costs from the use of older equipment, your bills increase. Your options are to increase rates, but you’re going to anger the people in your district. Federal rate increases are impacting their lives, too.

Finding ways to save money is important. As you can, upgrade equipment to lower the amount of downtime and maintenance. Upgraded equipment works faster and can be automated to monitor increases as people get home and do the laundry and cook meals or shower and get ready for work or school. It also can shut motors off as needed during slower periods when people sleep.

Increasing Operating Costs

Electricity costs in the U.S. went up from an average of 8.45 cents to 8.6 cents (per kilowatt-hour) for the industrial sector. This may not seem too alarming until you think about how much electricity is used 24/7 at a wastewater treatment plant. It’s estimated that the bubble diffusers that are necessary for aeration can use anywhere from 30,000 kWh to 50,000 kWh per day. The more efficient your wastewater treatment equipment is, the more money you save.

Growing Populations

In the 2021 Report for America’s Infrastructure, it was reported that 15% of the nation’s wastewater treatment plants are over their plant’s maximum capacity. One more home on an already overwhelmed plant can be catastrophic. In addition, 81% of the nation’s plants are at capacity. At that point, it was going to take more than $3 billion to replace the nation’s sewer lines, which was almost $20 per customer. 

That’s just necessary pipeline upgrades. There are also issues with outdated equipment and the high cost of maintenance that is eating up district budgets. It’s estimated that there is an $81 million infrastructure gap that’s making it hard for wastewater treatment plants to make necessary upgrades.

Cities and towns in a wastewater district have to carefully weigh how many new homes are built, but it’s hard to control some aspects like how many people are living in a new home without catching people off guard and demanding to do a headcount, which isn’t going to be welcomed.

There are state and local codes that determine how many people can live in a unit. These codes are in place to prevent strain on the infrastructure. A general rule is no more than two people per bedroom. In a three-bedroom home, there shouldn’t be more than six full-time residents. Leaving some room for population growth is important.

Newer Contaminants

Another leading problem wastewater treatment plants experience involves the newer contaminants that need to be removed from wastewater. Pharmaceuticals are one of them. 

Studies show that common medications like antidepressants are tough to remove from wastewater, and they do impact fish and other aquatic creatures. If a fish is contaminated with these medications, studies show it impacts their fertility. This could cause shortages of seafood in stores and in our diets.

PFAs are another newer contaminant that wastewater treatment plants need to address. Granulated activated carbon, high-pressure membrane, and ion exchange resin treatment processes can all help remove PFAs, which is something the EPA is starting to crack down on with Effluent Guidelines Program Plan 15.

Outdated Equipment

Many wastewater treatment plants rely on outdated equipment. This equipment is less efficient and drives up energy bills and can decrease how quickly wastewater is cleaned and released. 

This can lead to increased energy costs, decreased treatment efficiency, and increased environmental impacts.

In the U.S. the average age of underground wastewater and drinking water pipes is 45 years. Some districts are working with pipes that are at least 100 years old. When districts struggle to replace pipes within their district, it’s not surprising that equipment is often decades old and failing before it’s replaced. 

Many of the nation’s wastewater treatment plants were built when the Clean Water Act of 1972 passed. If a plant hasn’t replaced equipment since 1972, the equipment is likely outdated and in need of urgent replacement.

It’s Time to Act

The challenges facing the nation’s wastewater treatment plants are significant, but President Biden’s American Jobs Plan has provided some necessary funding to get to work improving the nation’s infrastructure. Of the $111 billion for water infrastructure improvements, $56 billion in grants and low-interest loads are available for wastewater, stormwater, and drinking water systems.

Look into these grants and low-interest loans to address the biggest issues facing wastewater treatment plants. When you work with experts in water treatment, you’ll get expert guidance into the improvements you should make right now vs. months or years later.

Lakeside Equipment can talk to you about the upgrades you should make and how you should time them to ensure you are not creating a financial strain on your district’s customers. Talk to our wastewater treatment experts to discuss what your goals are and discover the best ways to enact these changes while sticking to your district’s budget.

Minimizing Water Use In Your Facility: Tips & Tricks

It’s no surprise that industrial enterprises use an awful lot of water. What may surprise people is that industrial water withdrawals were estimated to be around 14.8 billion gallons of water per day in 2015. Around 82% of that water withdrawal came from surface water. 

Even with snowfall and flooding in areas like California and Utah, there is still a severe shortage of water across the U.S. Industries need to do their part to minimize water use in their facilities. There’s never been a better time to address this after news came out in November 2022 that a Saudi Arabian firm had been pumping unlimited amounts of groundwater from Arizona’s Butler Valley for just $25 per acre each year. The water is used to grow alfalfa for cattle being raised in Saudi Arabia. 

Is your plant taking the necessary precautions to conserve water? Are you making sure your industrial wastewater isn’t causing issues locally? If you make a mistake, it can be costly. One beverage company was fined $5 million for sending arsenic-rich industrial wastewater to a wastewater treatment plant that was not permitted to treat that level of hazardous waste. You have to put thought into your water usage and what happens to your industrial wastewater.

Lakeside Equipment has some tips for minimizing water use in your plant and making sure the wastewater you generate isn’t going to cause problems down the road.

Upgrade to Equipment That Uses Less Water

Depending on your industry, you may have equipment that requires water for things like cooling cabling that’s just been coated with insulating plastic or vinyl coatings. You might have industrial washing machines or dishwashers. Look into upgrading equipment with models that use less water and electricity. If your equipment is 20 years old, it’s more likely to use far more water and electricity than newer machines will, and that lowers excessive use of water.

What kind of AC system does your facility use? Cooling towers in labs can be wasteful if the settings aren’t adjusted to keep the cycle of concentration as low as possible. If you have a single-pass cooling system where water is passed once through a cycle before being drained and refilled, look into recirculating chilled water systems

If an air conditioner doesn’t need to be running 24/7, set it on a timer to ensure it gets turned off when a lab or office is empty.

Install a Small Water Treatment Plant

As technology advances, it’s getting easy to add a wastewater treatment plant within your hotel, school, or industrial setting. Water that’s used to wash sheets and towels from hotel rooms can be recycled and used over and over, which reduces the amount of water you take from the area’s water district.

Work with a professional in water treatment equipment to find ways to collect your facility’s gray water, screen it, filter it, and reuse it to fill the backs of toilets, water gardens, or reuse in washing machines. Watch reverse osmosis systems carefully as they can use more water than other filtration systems.

Pre-Treat Facility Wastewater to Lessen the Contaminants Going to the Sewers

In some areas, restaurants are not allowed to operate without a grease trap capturing fats, oils, grease (FOG), and food particles before the wastewater goes to sewer pipe outlets. Your facility could invest in a self-contained screening and grit removal unit that treats wastewater to clear out grit, FOG, and other contaminants that can clog pipes. If you invest in this pre-treatment equipment, you lower the risk of unexpected fines, and it helps the wastewater treatment plant avoid back-ups that create pollution and raw sewage releases.

Don’t Use City Water to Water Gardens or Fill Fountains

If your facility has gardens for curb appeal or to grow items like produce and herbs for your commercial kitchen, save rainwater in barrels, cisterns, or manmade ponds and use that. You could direct rainwater to a pond or barrels and use a pump system or gravity to bring the water through hoses to gardens for your watering needs.

Does your landscaping team use sprinklers to keep lawns watered? You lose water to evaporation. Try drip irrigation instead. Or, switch your landscaping to plants that require very little moisture and eliminate the need for watering at all.

Rainwater is also great for refilling water features in or outside your building. If you have a water fountain within your lobby, you can use rainwater to fill it. Add a pool bleach tab if you’re worried about sanitization.

Repair Leaks ASAP

When you notice a leaking toilet, sink, or pipe, have it fixed ASAP. Even a small leak can lead to a lot of wasted water over a week. If one faucet is dripping one drip every second, by the end of the day, more than five gallons of water have been lost. 

As you fix leaks and replace fixtures, switch to low-flow bathroom fixtures and faucets. Low-flow toilets use no more than 1.28 gallons per flush, which is almost one-fifth of the water that older 5-gallon toilets use.

Enlighten Your Employees

As you make changes, make sure your employees are aware. They may have noticed something that you’ve missed or have additional suggestions. You could reward employees who have water conservation tips or ideas.

Often, your employees will see more and experience more than you do as they’re on the factory floor or industrial kitchen each day. You might learn that the water from blanching vegetables for freezing is going down a floor drain, but an employee feels it could be reused. Imagine the water your food processing plant could save if you took that water and used it in another department that makes your company’s packaged stock or bone broth.

While you talk with your employees, it’s a good idea to come up with corporate policies that address water conservation. Having it in writing helps everyone understand their role.

Ask an Expert in Water Treatment For Additional Tips

It’s so important for industrial plants to minimize their plant’s water use. With our tips, you can reduce your water consumption and reduce how much time has to be spent cleaning your industrial wastewater by local treatment plants. The faster water is properly cleaned and returned to watersheds, the better it is for the nation.

Lakeside Equipment has the expertise you need to help you establish a water treatment plant within your facility. Reuse as much water as you can and lower the demand you draw on city resources. Not only will it cut your water bills and protect you from fines for releasing heavily polluted water to the local wastewater treatment facility, but it also helps protect area residents from water shortages. Reach Lakeside Equipment’s sales team to learn more about industrial water treatment options.

 

Recent Innovations in Water Treatment Technology

There’s a growing problem facing Americans. An estimated 44 million Americans lack adequate water systems with many facing violations of the Safe Drinking Water Act. Add to this the scarcity of water that’s become caused by droughts across the nation. 

California is one of many states where industrial use of the water in aquifers or industrial drilled wells has created problems for the local homeowners relying on their own wells for household water. Even with snow and rain helping boost some reservoirs, supply has to keep up with demand, and that’s not happening.

To get ahead of these issues, water treatment facilities and researchers keep working on finding innovative ways to improve water treatment processes. The more water that gets reused over and over, the less demand there is for the water in lakes, rivers, aquifers, and reservoirs. Water treatment needs to be efficient, affordable, and precise, and that’s where the future is leading us. Check out some of the most recent innovations.

Technologies and Advancements That Are Driving Improvements in Water Treatment

L’Oreal announced that 100% of the water used in its industrial plants will be recycled. That’s a start. But, science and research are equally important in changing the future of water treatment and reuse.

  1. Artificial Intelligence (AI)

AI is a great way to optimize water treatment processes to save energy and constantly monitor for higher levels of contaminants. If pumps need to be adjusted or things like chlorine need to be increased to ensure the water is clean enough, AI makes it happen. 

This technology can track and adjust flow rates through filtration. AI can also predict adsorption processes all day and night, which removes the risk of human error in the different water treatment steps.

  1. Cellulose Fibers

Purifying water using cellulose powder is one option that’s being studied. Tiny particles of cellulose capture pollutants. So far, studies have found that the pollutants are removed at an 80% removal rate. There is room for improvement, but it’s a start.

  1. Cleaning-in-Place Filters

Reverse osmosis cartridges have been used in plants and homes across the country to help clean water. Once a cartridge has been used up, it has to be disposed of. In some plants, there can be thousands of reverse osmosis cartridge filters, so that’s a lot of trash generation.

A company in Canada came up with a chemical cleaner that cleans cartridge filters so that they can be used again and again. It reduces plastic pollution, lowers plant costs by eliminating the need for downtime while filter cartridges are changed, and lowers the costs of new filters.

  1. Electrodialysis

Researchers at Georgia Institute of Technology have been looking at the use of electricity to shock water clean, similar to the methods used to pasteurize foods. Low-level electric pulses are introduced to contaminated water to help remove pathogens and other contaminants without the need for chemicals. The electric pulses are introduced to a membrane that kills bacteria faster than traditional water treatment processes.

  1. Membrane Filtration

Membrane filtration helps clean water quickly and effectively, and reverse osmosis is one type of membrane filtration that’s seeing improvements. Closed-Circuit Reverse Osmosis (CCRO), Forward Osmosis (FO), Membrane Distillation (MD), and Osmotically Assisted Reverse Osmosis are each worth a closer look.

  • CCRO – Water is recirculated at low pressure, which cuts energy use and requires less membrane filtration materials.
  • FO – Water moves through a semipermeable membrane using osmotic pressure.
  • MD – Water moves through a hydrophobic membrane to separate into two forms – liquid and vapor.
  • OARO – This form of reverse osmosis draws the water from brine, making it an ideal choice for turning ocean water into drinking water.

Membrane filtration can be costly and use a lot of energy. That’s where the company Elateq started when doing its research. Elated’s experts developed a one-step filtration system that uses 90% less energy by using a carbon material and low levels of electricity to clean contaminants like heavy metals, pathogens, and chemicals from water. The company’s patented filtration system is being tested in PepsiCo.

  1. Microbial Biofilm

The use of microbial biofilm is being studied to find ways to clean water without the use of chemicals. Metabolic Network Reactor (MNR) technology taps into the way aquatic plants clean water and establishes a microbial microfilm that mimics how plants’ roots clean the water. The “roots” draw in the contaminants, leaving the clean water behind.

Travelers going through Vermont may have encountered the wastewater treatment plant at the Sharon rest stop. That entire restroom facility uses plants to clean the wastewater from the bathrooms. The plants grow on the wastewater and the cleaned water returns to the toilets for reuse. Microbial biofilm follows the same idea of using the plants’ roots to remove bacteria and other contaminants.

  1. Nanotechnology

Nanoparticles are gaining increased interest when it comes to cleaning PFAs from wastewater. While PFAs are designed to avoid reactions with high temperatures and many chemicals, they’re very hard to clean from wastewater. But, scientists have seen success in removing PFAs with the use of engineered nanoparticles. The nanoparticles are coated with sorbents and draw PFAs to them like magnets.

  1. Reusable PFA Filters

Forever chemicals and PFAs have become a concern in the U.S. Short-term PFAs can be toxic, so their removal from drinking water is important. Filters to remove the PFAs are needed, but the cost to continually replace filters is a concern. Plus, the incineration of the filtration materials that captured the PFAs would just release those PFAs back into the environment.

A team of scientists came up with a bead that filters PFAs, but it can be washed clean for reuse. Filling a cartridge filter with these beads presents the option for a filter that can be used multiple times without decreasing its effectiveness.

  1. Solar (UV) Water Disinfection

Most people who grew up on city water know the smell and taste of the chlorine that’s used to purify water. Times are changing and solar water disinfection is trending. Instead of relying on chemicals, UV light is used to disinfect the water. Some plants pair lower levels of chemicals with UV light that helps the chemicals break down quickly leaving nothing but clean, odor-free water.

  1. Water Recycling

Reusing water is going to be the way of the future. Wastewater treatment plants should look at the benefits of establishing a plant that takes wastewater, cleans it, forwards it to a water treatment plant, and purifies it for household use.

Partner With an Expert to Find Innovations That Fit Your Needs

Lakeside Equipment is nearing 100 years of helping make water clean and safe for people. We’ve been experts in water treatment and wastewater treatment facilities since 1928. Our experts work with you to figure out clean water solutions that match your budget and facility size. Reach us online to find out how you can take steps to embrace water treatment innovation.

 

Removing Inorganic & Solid Materials From Wastewater

Wastewater is the water and material that travels from a home, business, or factory to sewer lines or septic tanks. It includes a mixture of inorganic, organic, and solid materials. The water from showers, sinks, dishwashers, toilets, and washing machines all become wastewater. It also includes the water used in food and beverage manufacturing and processing, paper mills, and many other industries. 

Some cities and towns have stormwater drains connected to the area sewer systems, known as combined sewer overflows. Combined sewers are not ideal as any heavy rains or melting snow also become part of the wastewater a plant receives for treatment. 

Around 700 combined sewers exist in the U.S. All of these combined sewers have to have plans in place to reduce the release of raw sewage if it floods, as do all sanitary sewer overflows, which are the typical sewer lines and sewer systems found across the U.S.

Before this wastewater is released into a body of water, be it a river, lake, or pond, solid, organic, and inorganic materials must be removed. How is this done?

Understanding the Differences Between Inorganic, Organic, and Solid Materials

Solids are pretty easy to understand. It’s the fecal matter, toilet paper, and items that shouldn’t have been flushed like toys, baby wipes, and plastic wrappers. 

You also have organic and inorganic materials. Organic matter includes living things like bacteria, parasites, fungi, and algae. Inorganic matter includes the minerals, metals, chemicals, and salts that are in urine, industrial wastewater, detergents and cleaning products, and water from washing dishes and cooking.

How Solids, Organics, and Inorganic Materials Are Removed

All organic, inorganic, and solids have to be removed from wastewater, and it usually involves three main treatment steps and the different stages of each one. The steps include:

  1. Primary Treatment

In primary treatment, wastewater moves through screens where solid materials like plastic applicators and bags, sticks, and other trash catch on the screens and is raked into collection bins to be transported to the landfill. In most plants, the wastewater now goes through grit removal, where items like coffee grounds, eggshells, sand, bone chips, and seeds are removed. It’s important to remove grit before it damages equipment through abrasion and settles and clogs pipes. The grit can be transferred to compost piles or landfills.

After grit collection, the wastewater flows into tanks where it is given time to settle. During settling, the heavier waste sinks to the bottom. Lighter materials like fats, oil, and grease (FOG) float to the top. The FOG is skimmed and removed, while solids are pumped from the bottom for sludge treatment. The remaining wastewater moves to secondary treatment stages.

Sludge treatment is a separate process where it is introduced to bacteria to help it decompose. This process produces methane. Some districts have systems set up to capture the methane biogas and use it to generate power or heat the buildings in the wastewater facility. The remaining sludge may be incinerated or disinfected and used as fertilizer. 

  1. Secondary Treatment

Wastewater that isn’t part of sludge or oily scum moves to secondary treatment stages. The next stage of cleaning the wastewater involves bacteria. Any sludge that remains goes from the bottom of the tank back to the beginning of the process to start over.

Some districts use fixed film systems to encourage the growth of bacteria as wastewater flows into secondary treatment steps. Others use suspended growth systems using decomposing bacteria and aeration to help grow bacteria and speed up digestion and decomposition. This is also helpful in reducing the ammonia found in wastewater from urine.

With an aerated system, wastewater moves to aeration tanks where oxygen is added to help aerobic bacteria thrive as they consume the organic materials that remain. Bacteria will remove these particles before their lifecycle ends. At that point, the wastewater is almost clean and heads to the final steps in wastewater treatment.

  1. Tertiary Treatment

Filters may be used to help filter any remaining particulates. Biofiltration is used to filter out some of the particles remaining in the almost-cleaned wastewater. Biofiltration may use sand, charcoal, or coconut fiber filters. Each plant has its preferred biofiltration material.

Often, the levels of nitrogen and phosphorus are still too high to be safely released into area lakes and rivers. If they were released at this stage, they encourage the growth of algae blooms and invasive weeds. For that reason, the water treatment process isn’t done. 

More bacteria are needed to absorb phosphorus and nitrogen. Or, water may be moved into lagoons where plants and zooplankton absorb them over time. 

To kill any remaining pathogens, chemicals like chlorine might be introduced. If they are used, the water has to be exposed to UV lights to dissolve the chemicals to recommend levels before the treated wastewater is released or transported to a water treatment plant to go back to area homes and businesses.

The equipment used and stages followed depend on the district and what the EPA permitted levels allowed in that region. Every wastewater treatment plant has instructions from the EPA setting limits for things like chlorine, E. coli, etc. are allowed. Wastewater treatment plant stakeholders need to make sure the equipment in the plant is capable of performing the job effectively and efficiently. 

Saving money is ideal, but not if the equipment you’re saving money using is failing to do the job required of it. Upgrading equipment for better performance saves money in the long run as you won’t face fines and potential criminal charges.

Tips to Help Produce Cleaner Water

If you read the news, you probably spot articles from time to time where a wastewater district was fined for releasing raw sewage – either knowingly or accidentally. Automation is one of the best tips for getting solids and inorganics from wastewater. When you have automated wastewater treatment equipment, the computer can gauge flow rates and adjust pumps and aerators accordingly. 

This ensures the different steps are handled correctly and lowers power consumption and wear and tear by slowing down pumps when people are using less water in their homes while they’re sleeping or at work. During the busier times of day, such as morning showers or dinner-time chores and preparations, computers will increase pumps as needed.

If something is changing and needs correction, a SharpBNR and PLC instrumentation package helps prevent the release of raw sewage. Paired with SCADA systems and HMI, human error is less likely to happen as alarms are sounded before major problems occur. You have time to react, and options like Variable Frequency Drives and motor starters make adjustments so that your team isn’t rushed to get to the right area of the facility. If you don’t have this technology in place, it’s time to look into it.

Take time to talk to your district’s residents and business owners. The more they know about the problems that impede water treatment steps, the easier it is to do your job. They may not realize that a “flushable” wipe, wrapper, or applicator isn’t truly flushable. Mailers and ads help spread the word.

Lakeside Equipment has close to a century of experience in water treatment technology and equipment. We’re leaders in water quality and are happy to talk to you about your plant’s equipment and design and offer insight into the solutions available to increase efficiency and water quality, all while lowering your maintenance costs and demands. Reach out to us and let us know how we can help.

How Is Artificial Intelligence Impacting Wastewater Treatment?

The nation’s wastewater treatment plants treat around 34 billion gallons of wastewater each day. That’s approximately 1.42 billion gallons of water per hour or 23.6 million gallons per minute. Water that flows in from sewers or is trucked in by septage haulers has to be processed to remove inorganic and organic materials and get levels of nitrogen, phosphorus, pathogens, and many other chemicals, metals, and pollutants to safe levels.

While machines do a lot of the work in a water treatment plant, you still have to have people ready to handle unexpected events like machine breakdowns or flooding. Take a look at some of the job duties an operator in a wastewater treatment plant and water treatment facility is tasked with. It often includes:

  • Adjusting water pressure and flow rates for repairs, if a water main breaks or a clog occurs.
  • Alerting chief operator and maintenance crews to problems with valves, motors, pumps, processing equipment, gauges, meters, and other wastewater equipment. 
  • Calibrating lab equipment and preparing the chemical mixtures needed for testing.
  • Collecting wastewater samples and running tests on the water quality to ensure the treated water meets permitted limits.
  • Inspecting equipment and facilities for problems.
  • Keeping floors and buildings free of obstacles and clutter that decrease safety.
  • Logging water quality and readings from the equipment.
  • Managing hydrant flushing to prevent mineral and sediment build-up in lines.

A lot of this could be automated with the use of AI. Humans make mistakes. No one is perfect, even after training and certification. But, you can improve your wastewater treatment plant’s efficiency and output using artificial intelligence. Take a closer look at the facts and benefits that are gained when using AI in your wastewater treatment plant.

Understanding the Role of Artificial Intelligence in Wastewater Treatment

Artificial intelligence uses computer science and datasets to perform tasks that require a human’s intelligent approach to thinking, evaluating, and problem-solving. AI will use skill sets like speech recognition, analytical skills, decision-making, and visual perception to contemplate and complete tasks. It’s extremely useful in wastewater treatment where precision, timing, and accuracy are essential.

It all stems from a paper written back in the 1950s in which Alan Turing pondered a simple question about whether or not machines were capable of thought. It led to the Turing Test where an interrogator had to decide if a response was generated by a computer or given by a human. This kicked off the advancements AI has seen since then.

Whether wastewater is trucked into a septage pumping station or comes in from the sewer system, the treatment stages are the same, though the requirements for treatment may vary from one location to the next. When a wastewater treatment plant gets a water discharge permit from the EPA, the effluent guidelines are listed in the permit. 

Plants must work to meet or exceed those guidelines by properly completing each stage of wastewater treatment. If you look at the stages of wastewater treatment, it becomes clear where AI can help out.

  1. Screening and Pumping

As wastewater enters a treatment plant, it must be screened to remove items like plastics, “flushable” wipes, toys, and other items that will not break down easily. Those items are washed and pressed to remove as much wastewater as possible and then moved to a landfill.

AI can be helpful in this stage by helping to monitor for jams at a septage pump station. AI can closely track the amount of septage a truck is dropping off and the flow rates coming in from sewers and use the real-time information to speed up or slow down pumps to help lower energy costs and prevent costly overflows.

While many cities have shifted away from combined sewer and stormwater systems, there still are cities that have these combined systems. In moments of heavy rain or when the snow melts faster than expected, the influx of stormwater can increase demand for a wastewater treatment plant. It’s not uncommon for plant operators to have to release untreated or partially treated wastewater to the lake or river to prevent flooding. That emergency release can be costly, but AI can help lower the risk of that happening.

  1. Grit Removal

Once wastewater has been screened and raked, grit removal is the next stage. Gritty particles like sand, gravel, coffee grounds, and bone fragments are all damaging to equipment. Instead, grit is allowed to settle and then it’s pumped out and removed to landfills. 

The reason grit needs to be removed is that it wears out equipment faster. If you get grit building up in a pump or motor, the continual rubbing and abrasion degrade the components, increasing the need for repairs. One thing AI offers that is important is predictive maintenance. AI can track the usage of different machines and predict when components are starting to wear out. 

Your team can make repairs before the equipment fails. This prevents unexpected downtime, which is essential in wastewater treatment.

  1. Primary Settling

While grit removal is technically a settling process, primary settling is the first big move to remove materials from the wastewater. The water enters the clarifiers (large, circular tanks) and sludge (food, toilet paper pulp, and human waste) sinks to the bottom where pumps remove it. Fats, oils, and grease float to the top and form a scum layer that can be skimmed out and removed. The removed sludge and FOGs go to digesters for further processing during activated sludge. 

Chemicals may be added at this stage to start removing phosphorus. AI can help with the dispensing of any chemical additives to ensure that the right amounts are used and avoid lost money through excessive use of these chemicals. Even a splash more than is necessary can drive up costs each month.

  1. Aeration and Activated Sludge

The sludge and FOG are introduced to microorganisms that break them down into nitrogen, water, and cell tissue. Treated wastewater goes on to secondary settling.

  1. Secondary Settling

Secondary settling involves more clarifiers. This time, aeration helps further separate the activated sludge, which is pumped from the bottom of these circular tanks and returned to the activated sludge process. The clarified wastewater is now almost entirely free of materials. It’s moved to the filtration process.

  1. Filtration

Filtration is one of the final steps before water is released to streams, lakes, rivers, or a water treatment plant for reuse. The water is pumped from secondary settling tanks to large filters that capture tiny particles. From time to time, the filters are backwashed, and that water goes to the start of the wastewater treatment stages to prevent any loss of water.

  1. Disinfection

Some plants use products like chlorine to kill remaining bacteria. Others rely on chemical-free UV disinfection. Ultraviolet lighting like the sun’s UV rays kills remaining bacteria. If chlorine is used, it must dissipate to acceptable levels before it’s released to bodies of water where it could harm aquatic plants and animals.

  1. Oxygenation

Before the water can be released, it has to be properly oxygenated. AI is helpful in the real-time tracking of oxygen levels to ensure the water that’s released is exactly where it needs to be. AI can add oxygen or turn up bubblers to release oxygen if the content is too high.

SCADA systems are often used by wastewater treatment plants today, and SCADA systems have been beneficial in predicting problems and alerting plant operators to take corrective actions. With the use of AI, so much more is possible. 

AI Saves Money

A German wastewater treatment plant incorporated AI sensors and found their energy usage declined by 30%. Artificial intelligence saves money and helps prevent costly errors. Talk to Lakeside Equipment about the possibility of adding AI to your existing computerized controls and the equipment upgrades that help bring your plant to a point where AI is easily incorporated.

What Are the Stages of Wastewater Treatment

pump sucking water from treatment plant

When wastewater leaves a business or home, it enters the sewer pipes or heads to a septic tank and leach field. What happens from there? What are the stages of wastewater treatment and what can you do to have an efficient, effective wastewater treatment plant as you consider each of these stages?

Stage 1: Screening

Before anything else happens, wastewater and hauled septage have to go through screening. This is where the things that shouldn’t ever be flushed or allowed into sewer lines are filtered and removed. This includes items like a child’s toy, a plastic tampon application, rags, plastic wrappers, grease clumps, and pieces of wood. They are raked from the filters, rinsed to remove any waste products, and pressed to get out as much water as possible.

Items removed in the screening process go to landfills. The remaining wastewater moves to the second stage of wastewater treatment.

Stage 2: Grit Removal

Grit removal is a process where fine, gritty particles are removed from the wastewater. It includes particles like coffee grounds, sand, and gravel. They are removed by a pump after the grit settles on the floor of a grit chamber. From there, it gets hauled to a landfill. The remaining wastewater goes to clarifiers.

Stage 3: Primary Settling/Clarifying

At this point, the wastewater is rid of grit and trash. It sits in a circular tank to settle. Sludge sinks to the bottom of the tank, and fats float and collect on the surface. The wastewater between the two layers leaves the tank.

The fat layer is skimmed periodically from the surface, while the sludge is pumped out. Chemicals are introduced to start breaking down the phosphorus. 

Stage 4: Aeration

Aeration is the key step in processing wastewater. Pumps add air to the wastewater to help aerate it while microorganisms begin to digest the remaining sludge and pollutants and create a mixture of water, nitrogen, and cell tissue. 

Stage 4B: Activated Sludge

The remaining sludge goes through treatments of its own. To start, it is skimmed from the aeration tanks. Water is removed from the solids and returned to the start of the wastewater treatment process.

The thickened sludge mixes with primary sludge and is pumped to a primary digester. There, it’s heated and allowed to compost for over a month using anaerobic bacteria to help break it down. Pollutants from the sludge are digested by the bacteria and converted to carbon dioxide and methane gas, and water. 

After the bacteria has done its job, the remaining sludge is moved to a gravity belt where it’s mixed with a polymer that helps absorb all of the water. Water drains into a basin where it has to be slowly mixed back to the beginning of the wastewater treatment process because of its high ammonia content. Too much all at once creates problems.

The sludge goes to storage tanks where it sits for upwards of a year before going into tanker trucks to be spread at approved sites, such as fields and forest lands, to provide nutrients the soil needs for optimal plant health.

Stage 5: Secondary Settling/Clarifying

Wastewater is pumped to secondary clarifiers. At this point, the wastewater is 90% of the way to the finished product. Activated sludge is continually pumped out as it settles and goes back through Stage 4B.

Stage 6: Filtration

Now that the wastewater is cleaned. It’s filtered through some type of media. Different wastewater treatment plants rely on different types of filters. Some may use activated carbon filtration, some might rely on coconut fibers, and some use polyester. If any particles are on the filter, they’re washed and returned to Stage 1.

Stage 7: Disinfection

The filtered wastewater is now mixed with chemicals to kill any remaining bacteria or exposed to UV disinfection. Water is tested throughout the process to make sure it meets the required levels before it’s released to the area river, lake, pond, or water treatment plant for reuse.

Stage 8: Aeration

Some wastewater districts add one more step to aerate the cleaned wastewater to make sure it has the correct oxygen levels. Every wastewater treatment plan has requirements listed in its permit. Failure to complete the steps needed to bring the water quality to those levels can lead to hefty fines.

Consider Your Options for Hauled Septage

When a wastewater district also accepts septage from residences and businesses that are not on a sewer line, a septage acceptance plant is necessary. This is the station where trucks will pull up and pump out their tanks with the septage they’ve pumped out of septic tanks. 

Hauled septage is raked to remove any trash or grease clumps. The remaining wastewater and sludge get pumped to the screening stage of wastewater treatment. As septage haulers collect money from businesses and consumers and pay the wastewater district from those proceeds, you’ll want to have a computer system set up to track who is bringing in the septage, how much they dropped off, and bill them accordingly. 

Tips For Improving Effectiveness and Efficiency

You have to have a wastewater treatment plant that effectively cleans water in the most efficient manner possible. How do you ensure you’re cleaning the water effectively, avoiding raw sewage releases, and keeping costs down for the members of your wastewater district?

  1. Automation Eases Guesswork

Do you struggle to keep up with the flow rates at your facility? Do you have some days where your employees struggle with higher flow rates than estimated, so they have to constantly speed up or slow down pumps and motors? Or, do they run the motors at high speeds as a preventative measure, even when it’s unnecessary? It’s not an ideal way to operate your wastewater treatment plan.

If there’s heavy rain and your wastewater treatment plant and stormwater runoff are linked, it’s easy to flood and require raw sewage to be released. It’s not ideal for the environment. It’s also easily addressed by adding automation to your plant.

  1. Upgrade Older Equipment

Some of the easiest changes to your plant that will result in cost-saving measures are to look at the aeration system you use. Older pumps and motors can be upgraded to more energy-efficient models that do the job better while requiring less electricity.

  1. Consider Solar and Wind Power

It’s estimated that all of the municipal wastewater treatment plants in the U.S. use about $2 billion in electricity each year. Upwards of 40% of a plant’s operating costs come from the plant’s electricity consumption.

While it does cost money to establish solar or wind power systems at your plant, the savings over time are worthwhile. After a 10-acre solar panel farm was placed near the Moccasin Bend wastewater treatment plant in Tennessee and upgrades were made to some of the plant’s equipment, the plant’s power consumption dropped by $1.4 million per year. 

  1. Heat With Methane

A wastewater treatment plant ends up with methane being produced as part of the process. Why not use that methane gas to heat the plant? You’ll eliminate bills for propane, oil, natural gas, or electric heat during the winter months. 

Lakeside Equipment has decades of experience in wastewater treatment designs and equipment that boost your plant’s efficiency and keep up with changes in the flow rates during unexpected storms. We’ve been around since 1928 and provide you with an experienced engineer to design a system that meets your municipality’s needs and budget. 

From final design to installation and operation, our field engineers ensure your system is optimized to do everything you expect. Talk to our wastewater experts about the SharpBNR control system that reduces electricity costs and boosts your plant’s reliability. You can pair it with a SCADA system for optimal performance throughout your wastewater treatment plant.

Fat, Oil, and Grease Screening in Wastewater

Vegetable oil pouring out of the bottle

Have you seen all of the TikToks where wastewater treatment plant operators say that the only thing people should be flushing or putting down their drains are the three P’s: Poop, Pee, and Paper. It’s all part of a push to educate people and stop some of the problems faced by wastewater treatment plants.

FOG (fats, oil, and grease) are one of the biggest problems in wastewater treatment. Whether it’s inadvertent or deliberate, people pour cooking oil, meat drippings, sauces, melted butter/margarine/shortening, and dairy products down their sinks.

It may seem fine, but in a sewer line or piping, the oils cling to the sides of the pipe and mix with other items that get flushed, such as baby wipes, tampon applicators, condoms, plastic wrappers, etc. It creates a fatberg that can stop the flow of wastewater in a sewer.

Wastewater treatment plants have to have a plan in place to handle this problem. In addition to educational efforts, fats, oil, and grease screening is one of the essential steps. Explore the different ways your district should be handling FOG in wastewater.

The Importance of Keeping FOG Out of Wastewater

While the average person may not think much of the chicken grease that goes down their drain, it becomes a nightmare over time to wastewater districts. In 2020, a 1.65-ton fatberg was pulled from a sewer in Leeds, England.

That’s not even the largest in known history. A 130-ton fatberg was found blocking a sewer tunnel in London back in 1997. It measured around 820 feet long and took workers around a week to remove it, costing the city around £1 million to do so.

That’s still not the largest. Birmingham, England, was found to have a massive fatberg that weighed over 300 tons and was more than half a mile long. Thames Water spent an estimated $1 million to remove it over a span of weeks.

If you still want to hear about even bigger fatbergs, Cardiff, Wales, had an 881-ton fatberg in the city sewers. The fatberg was estimated to be the equivalent of 133 African elephants in size and caused other sewer lines to collapse.

The United Kingdom isn’t the only country dealing with fatbergs. In the U.S., In Baltimore, a fatberg created a sewage overflow that led to almost 1.2 million gallons of raw sewage being released into Jones Falls. The fatberg was blocking 85% of the sewer main.

A year later, Detroit’s Macomb Public Works discovered a fatberg that was 100 feet long and more than 10 feet wide. To educate the public, the city put a section of the fatberg on display at the Michigan Science Center. What was in this fatberg? Lots of syringes, candy wrappers, and tampon applicators.

Not only can fatbergs block the flow of wastewater and lead to overflows and EPA fines, but they can also destroy lines in a sewer system and require costly replacement. Plus, the amount of manpower, overtime, and equipment needed to break up and remove sections of fatbergs is costly. It can drastically drive up costs, and those increases can be passed on to people within a sewer district.

Start by Educating the People in Your District

Ads on local news stations are one way to educate people in your district. You should also look at social media as a powerful tool to spread the message. Facebook, Twitter, TikTok, and even Reddit can help you get the word out. Pictures or videos of fatbergs and FOG deposits at your wastewater treatment plant present vivid images to show what happens.

To prevent it, whether they’re at work or home, people need to stop washing food waste down the drain. Use a paper towel to wipe as much food, oil, and grease out of a pan or dish before washing it. Grease can go into an unused glass jar or can and then be disposed of in the trash.

Restaurants should have grease traps installed to capture FOG and keep it from going into the sewer lines. Grease traps may be mandatory in your city or state, so any restaurant owner should make sure a grease trap is installed and maintained properly. Captured oils can get hauled away to plants that convert them into biodiesel and products like candles and soap.

In addition to FOG precautions, area residents need to make sure they’re not flushing improper items. Flyers reminding people what should and shouldn’t get flushed is useful. An updated online guide is also important. Make it clear that items like flushable wipes and flushable cat litter that claim to be flushable are definitely not something that should go down the toilet instead of into the trash.

Your Wastewater Treatment Plant Needs Screens That Remove Scum, Sludge, and Grease

Lakeside Equipment is an expert in wastewater treatment equipment that removes FOG. Wastewater screens can be useful in getting grease, oil, and fat out of the wastewater where it can then be sent to a landfill, composted, or incinerated.

A Lakeside Raptor Fine Screen is one of the best options and is trouble-free for many years. Maintenance needs are minimal. It completes these steps while screening FOG.

When wastewater levels reach the designated point, the Raptor Fine Screen’s rake arm starts moving to capture scum, sludge, and FOG.
After it’s completed its revolution, the material that’s been raked goes into a collection area.
The rake arm reverses direction and goes through a hinged comb to clean out any trapped materials.
The waste materials then get pushed using a screw conveyor through the transport tube to be washed, compacted, dewatered, and moved to a container to be transported to another facility or area.

The Raptor Fine Screen has optional features that may suit your wastewater treatment plant’s needs. One of the most important is weather protection which protects against temperatures as low as -13ºF. You can also purchase it in a pre-engineered tank if necessary.

The stainless-steel design doesn’t rust or corrode easily. It’s especially good at removing debris and grease that can plug up pipes and impact flow rates. FOG and other debris can be dewatered, washed, and compacted to reduce the weight by as much as 67% and overall volume gets cut in half, which lowers the amount of material you have to dispose of.

When your district is experiencing high levels of fats, oil, and grease throughout the year or seasonal increases in fatty foods like fried turkey or prime rib roasts, be prepared for the increase in FOG. Heighten educational messages and make sure your wastewater treatment plant is prepared to remove FOG using wastewater screens.

Lakeside Equipment is an expert in FOG removal. Talk to us to discuss your district’s problems and we’ll work with you to come up with the best options.

Wastewater Inorganic Material Removal Tips

Waste water removal and treatment plant

What is inorganic material in wastewater? Human waste, food scraps, and plants are organic in nature. They break down easily. Some materials that make their way into wastewater are not organic and do not decompose. Inorganic materials include soaps, nitrates, chlorides, phosphates, heavy metals, etc.

Some of the inorganics found in wastewater include cadmium, copper, lead, and mercury (heavy metals). They can come from older homes with copper piping and lead solder. There are non-metallic salts like arsenic and selenium. They can come from manufacturing plants, improperly disposed cleaning products, paints, and items like deicing products that are picked up in stormwater run-off when sewers and stormwater drains are connected.

Wastewater inorganics require careful removal to get them out of the wastewater before it’s released back to bodies of water or water treatment plants for community water supplies. What are the best ways to remove them?

Start With Trash and Screen Rakes

Wastewater is 99.9% water and 0.1% organic matter, inorganic matter, and microorganisms.  It’s that 0.1% that wastewater treatment plants must remove before releasing it to rivers, ponds, lakes, or oceans or a water treatment plant that serves a community.

Some inorganic materials in wastewater may be large enough to remove using screens. This includes things that never should have been flushed or allowed to get down the sink, such as plastic tampon applicators, jewelry, condoms, toys, and plastic wrappers.

A screen will capture those items before they get into the wastewater treatment stages. Trash rakes remove them from the screens to ensure wastewater flow isn’t impeded. Screens can start with a large mesh and get smaller to ensure items of varying sizes are captured in this process. All of these items can then go to landfills for proper disposal.

Sequencing Batch Reactors Are Essential in a Wastewater Treatment Plan

A Sequencing Batch Reactor (SBR) offers a continuous feed process to help with the removal of nitrogen and phosphorus. Using aeration, oxygen helps break down organics. As the wastewater is aerated, microorganisms get to work feeding on nitrogen/nitrates and producing sulfate. Some wastewater treatment plants can capture methane produced during wastewater treatment and use it for heat

Sludge (solid materials) sinks to the bottom and can go to landfills or be turned into fertilizer for forests and fields. Sludge pumps are used to help get the sludge out of the tanks.

Enhance Your Systems Precision and Stability With SharpBNR

Your plant has workers, but it’s hard to predict how a day will go. Heavy rainfall, holidays, and even the pandemic can change how much wastewater flows from area homes and businesses. During the pandemic, more people worked from home and school children stayed home. People were home and using the toilet and sinks all day, which changed peak hours for higher flow rates.

There will be moments when flow rates increase and decrease. A SharpBNR control system continuously monitors for fluctuations and adjusts equipment to maintain proper operation. If there are issues that require human intervention, alerts go out.

Industrial Plants Should Consider Treating Their Wastewater Before It Goes to Sewers

If there are several industrial plants in your district, it’s time to consider having them put in water treatment equipment that pre-treats the factory’s wastewater before it goes to the sewer lines.

Package treatment plants are a great solution for industrial companies. The all-in-one plant includes screening, aeration, clarification, disinfection, and sludge removal in one tank. It’s an easily installed single system that doesn’t require a lot of space, making it ideal for established plants.

Explore the Pros and Cons of the Most Popular Removal Methods

  1. Adsorption

Polymeric adsorbents are one option for removing inorganic matter from wastewater. They’re generally low-cost and do a good job of removing heavy metals and balancing pH levels. Some of the most popular polymeric adsorbents include clay, zeolites (aluminosilicates often used in dietary supplements), and nanometal oxides.

Using the same process, there is ongoing research regarding the cellular structure of algae to help remove inorganic materials. Algae feed on nitrogen and phosphorus to grow. As algae grow steadily, they can become useful in other areas like algal biofuel.

  1. Bioelectrochemical

One area that’s gaining interest is bioelectrochemical systems. The energy present in organic matter becomes useful in generating power that oxidizes the pollutants. As contaminants are removed, electricity is generated. That electricity can change heavy metals like chromium from a soluble state to an insoluble one, making it easier to remove. With this process, denitrification can occur at a lower cost than some of the other methods.

  1. Chemical Precipitation

One option for treating inorganic materials is to add a chemical reagent to remove inorganics. This isn’t an ideal option as some of the reagents that are commonly used include ferric salts or lime. It ends up impeding sludge treatment, making it an ineffective option in any wastewater that also has organic materials.

  1. Ion Exchange

Ion exchangers replace calcium and magnesium with sodium ions. The process starts by passing wastewater through an anionic exchange resin that replaces the anions with hydrogen and hydroxide ions and creates molecules of water and then introduces sulfuric or hydrochloric acid.

The ion exchange resin layers are usually set below the flow of water. They can end up getting clogged, which isn’t ideal and needs to be addressed or you’ll end up with a malfunctioning ion exchange.

  1. Membrane Filtration

Ultrafiltration uses membranes to filter out inorganic materials. Wastewater is pushed through the filters using pressure. It’s an effective system, but it does reduce water pressure. It’s ideal for filtering colloidal and dissolved materials.

  1. Reverse Osmosis

Reserve osmosis requires wastewater to pass through a semipermeable membrane at high pressure, and that pressure is created using a pump. This causes contaminants within the wastewater to dissolve and separate from the water. The clean water continues flowing, but the contaminants are trapped in the membrane. This system is one you often see in homes.

Work With an Expert in Clean Water to Get Desired Results

Effective inorganic material removal starts with the right equipment. Lakeside Equipment has been designing, installing, upgrading, and maintaining water treatment solutions since 1928. We have close to a century of experience consulting with water treatment engineers, managers, and operators to ensure equipment does everything they need.

When you upgrade your wastewater system to meet new guidelines or need to improve your system’s efficiency or capacity, it’s important to work with a wastewater treatment specialist who can implement upgrades that meet your requirement without greatly increasing your budget. People in your district won’t appreciate a giant increase in their water bills, so you have to carefully plan upgrades and take advantage of grants.

Reach our experts by phone or online. Our online contact form is available 24/7 and makes it easy to get hold of Lakeside Equipment’s experts.

What Is a Wastewater Bar Screen & Why Do I Need One At My Treatment Plant?

People often flush items that never should have been flushed. Menstrual products, diapers, baby wipes, condoms, and even accidental children’s toys can end up in the sewers and septic tanks and into your wastewater treatment plant.

Items like paper towels, baby wipes, and even the supposedly flushable wipes or cat litter can collect grease that goes down drains while washing dishes. It creates the fatbergs that create blockages in sewers.

Fatbergs can be gigantic and create major headaches for wastewater workers. The biggest fatberg in the U.S. to date was found in Detroit and measured 6 feet tall, 11 feet wide, and 100 feet long. This isn’t the largest fatberg found in sewers. One found in London was estimated to weigh 130 tons and stretched for over 820 feet.

It’s not just things that people put down the drain or flush in a toilet. If your district has a combined sewer overflow, which combines stormwater runoff systems and the sewer system, you’ll also end up with trash, branches, leaves, and other debris. All of these items can do a lot of damage by clogging channels and lines or getting caught on equipment. It’s important to screen incoming wastewater and septage to remove them.

Wipes Are a Costly Problem

A 2019 NACWA study looked at the added cost that baby wipes place on different states’ wastewater districts. In California, the cost came to more than $47 million. New York was second with added costs of almost $38 million. Illinois, Ohio, and Texas rounded out the top five with respective totals of $29 million, $25 million, and $25 million. In all, wipes add more than $440 million in operating costs to wastewater treatment plants throughout the country.

People in your district may not have any idea of the problem they’re creating while using wipes. Many are marked as flushable products, just like toilet paper, yet they do not dissolve effectively. Ryerson University looked at 101 brands of wipes, 23 of which were labeled flushable, and none of them broke down enough to prevent clogs.

Once in the sewer lines, wipes can increase operating costs by creating fatbergs that must be broken up and removed. At lift stations, they accumulate on screens and have to be removed, but if the bar screens are not narrow enough, they get into grinders and pumps and increase maintenance on those pieces of equipment. Wipes increase the maintenance that has to be performed on grinder pumps, dewatering pumps, mixers, and tanks.

An overloaded plant can also pose problems. If a clog has slowed wastewater from reaching your plant, you can have backups causing damage to homes and businesses. It may back up and enter the environment. If you have a sewer overflow, you face costly fines. When the wastewater finally releases as a clog is broken up and removed, you have a rush of wastewater coming into your plant. If you overload your equipment, you may have to release raw sewage, which can also lead to fines.

Wipes also drive up your plant’s disposal costs as items must be removed to containers, and trucked to landfills. You have the trucking fees, extra manpower, and disposal fees at the landfill.

The NACWA broke down what the added cost of wipes adds to a household’s sewer bill. In some areas, it’s about $5 a year, but it can be as much as $25 per year extra. This may not seem excessive, but added to other increasing expenses, it can strain households with a limited income.

There are two things you need to do. First, educate your district members about the importance of flushing only toilet paper and throwing out wipes, sanitary products, paper towels, condoms, etc. Make sure they are well aware of the problems that can drive up their annual wastewater bills. Second, install bar screens at your wastewater facility. Bar screens prevent a lot of frustration and damage in the long run.

What Do Bar Screens Do?

To reduce the damage and annoyance trash and wipes cause, bar screens are an important primary step in any wastewater treatment plan. If your plant doesn’t have a bar screen system or has an older, outdated one, it’s time to change that.

As wastewater comes into your plant, it travels through a channel and that channel has a series of coarse and fine bar screens that are usually spaced between a quarter-inch up to three inches apart. They trap items that shouldn’t be in a wastewater treatment plant, such as plastic or paper items that were flushed, animals that got into the sewers and died, and other debris like bone scraps that may get rinsed down the sink.

The bars trap the items, which could pose problems if they’re just left there. They’d block the flow of wastewater over time. That is prevented by having an automated rake that sits on the bottom of the channel and moves upward to capture all debris and some solids and lift it out of the wastewater.

At that point, the items that have been removed can go into bins to go to the landfill. Trash and hard organic materials aren’t going down the line where they can damage equipment or become extra work for your employees. The wastewater flows into the plant to begin the treatment process.

Choose a CO-TEC Screen for Easy Maintenance

The CO-TEC screens have fine and coarse galvanized steel or stainless steel bar screens that are cleaned by rake teeth that are positioned downstream of the bar screens to capture and remove trash and other debris. As all of the parts are above the surface of the wastewater, the maintenance on them is easier for your workers.

Lakeside Equipment is a trusted provider of wastewater bar screens and other crucial equipment that improves efficiency within your plant. New equipment does have an upfront cost, but the savings on the plant’s electricity bills provides a return on your investment in little time and keeps maintenance and operating costs down in the years to come. That makes the people in your district much happier in the long run.

Since 1928, Lakeside Equipment has specialized in water purification. Not only can we repair your existing wastewater treatment equipment, but our professionals offer sound advice on what you can do to improve your plant’s efficiency and avoid costly fees for improperly treated wastewater or sewer overflows.

Our team helps design the upgrades you request, keeping within your budgetary restraints, and installs bar screens that prevent problems caused by items that shouldn’t ever be flushed. Give us a call to find out more about the benefits of bar screens.

Sources:

https://www.mlive.com/news/2018/09/fatberg_metro_detroit.html