Monthly Archives: July 2019

Building a Sustainable Water Future – 3 Trends to Watch

Chennai, a capital city on India’s Bay of Bengal, went a full 200 days without any rainfall. This is worrisome news for a city that is home to a third of the country’s automotive industry and a major player in India’s film industry. The city’s water reservoirs have dipped to the point that they only hold 1% of their capacity.

Water is being trucked in, and it can take a full month for a water tanker to arrive. The flow of water to homes in the city is at just 10% of what it used to be. Workers and school children are asked to bring their own water to work or school. The fear of going completely dry is a daily worry for people in and around this city.

Lack of rainfall is only part of the city’s issue. Mismanagement of the water sources and lack of foresight are also to blame. The city didn’t do what it should have to build a sustainable water future. Everyone should be focusing on this issue, but some take having clean water for granted. It’s time to look at building a sustainable water future, and these are the trends people should be watching.

Infrastructure Improvements

One area that’s lacking in some cities is updated infrastructure. Underground water pipes across the country are springing leaks. This water ends up going into the ground and never making it to homes and businesses. The American Society of Civil Engineers (ASCE) shares a few facts that make it clear that infrastructure must be a priority.

The U.S. has 1 million miles of pipes that deliver clean water to homes and businesses. Many of these pipes were installed between 1900 to 1950 and were only intended to last 75 to 100 years. As the infrastructure degrades, it’s estimated that there are 240,000 water main breaks each year. How much water is being lost in those costly breaks? The ASCE’s estimates are more than 2 trillion gallons.

In addition to replacing worn pipes and water mains, water treatment plants need to make sure their equipment is in good working order. Over time, grit can wear down the pumps and valves round in water treatment equipment. It can build up in tanks and water channels and cause additional issues. Upgrading equipment before it fails completely helps ensure people have access to clean water.

Smart Technology

Smart technology is helping homeowners manage their homes from a remote location. That same technology is being used in water treatment and public water systems. With smart technology, municipalities can monitor their infrastructure for leaks and catch them early. They can monitor the pressure and workflow. The goal is to lower costs by finding problems before they become excessively expensive.

When water systems are managed using smart technology, it enables water districts to monitor consumers’ water usages with the supply of water flowing. This has the power to reduce operating costs, and the savings can be used to help pay for other aspects like repairs to infrastructure. Some cities are also starting to cut costs pairing smart technology with alternative energy sources like solar-powered water pumps, which helps increase the overall costs of supplying water to residents and businesses in that district.

Wastewater Reuse

Reusing water has been an effort across the country. It’s one of the best ways to make sure rivers, streams, ponds, and lakes don’t run dry. As a household or business uses water, it’s sent back to the water treatment plant to be cleaned, chemically treated to remove bacteria, and returned to water sources or storage systems to repeat the cycle.

Major companies are starting to invest in this trend. For example, Intel Corporation, a name you wouldn’t associate with water treatment, invested $25 million in it’s Oregon manufacturing plant. The water it uses to manufacture microchips will be treated in an on-site water plant and returned to the community.

Breweries are also jumping on this trend. A lot of water is used to make beer. Not only is it a main ingredient, but it’s used to rinse grains and wash equipment after the beer is made. Vermont’s Alchemist Brewery worked with experts to create wastewater practices that would reduce the strain they were putting on the town’s wastewater treatment plant.

Lakeside Equipment can help you boost your water treatment plant’s performance using these and other trends. We create designs that are specific to your budget and needs while also focusing on efficiency and quality. We also have replacement parts if your current system needs repairs. Talk to our experts to discuss how we can help.

Global Activated Carbon/Charcoal Market & Water Purification

Water treatment dates back to at least 4000 B.C. Ancient Greek documents discussed purifying water by running it through charcoal, exposing it to the UV rays of the sun, and boiling it prior to consumption. This was done to kill bacteria, remove odors, improve taste, and eliminate cloudiness.

There are also historical records showing that Ancient Egyptians added alum to water to help clarify it by suspending the particles floating in it. In the 1800s, the cholera outbreak in London was found to stem from sewage that got into a well used for drinking water. Louis Pasteur would be the person to show how bacteria in the water could cause disease in people.

Our water today is cleaner because of the world’s history and discoveries along the way. Today, activated charcoal, or activated carbon, is one of the components used in water filtration systems. In 2017, activated charcoal was a major player in water filtration, but substances like olive pits, shells from nuts, and coconut fibers are also being used. Before the year 2025 ends, it’s expected that the global activated carbon market will be worth more than $6.6 billion.

How Activated Carbon Filters Water

You’ve heard of the term absorb, which is to soak something up. Activated charcoal or carbon is a little different. It adsorbs odors and substances from liquids. Instead of absorbing these odors and substances, it bonds to them. That’s called adsorption.

A process using oxygen turns charcoal very porous. Those tiny pores trap and hold the substances that cause off-colors and odors in water. It can trap and hold things like chlorine, toxins, and even some prescription drugs that make their way into water sources.

In a household, you might have a water purification system like Brita or PUR that attaches to your faucet or a water pitcher and removes impurities and odors from your tap water. People often use them to remove the chlorine odor and taste that remains in public drinking water.

In a water treatment plant, crushed activated carbon or charcoal can help remove excess chlorine, organic materials, and other impurities. To do this, the crushed carbon is added right to the water where it removes the contaminants and then is removed after it settles with other sediments in holding tanks. Once it is removed, it can move to compost areas or landfills.

Sometimes, activated carbon pairs with a UV disinfection system to aid in the removal of chlorine and other compounds that affect the taste and smell of water that’s been treated.

Placement of an Activated Carbon Filtration System

The Environmental Protection Agency lists two ways to implement an activated carbon filtration system in a water treatment plant. One is a granular activated carbon filter that is added after the rapid mix, flocculation/sedimentation, and filtration steps. Water flows into the granular activated carbon filter once the water has been in the filtration tanks. This is known as post-filtration adsorption.

The second placement is as part of the filtration tank. The granulated charcoal sits in the bottom of the filtration tank where it filters out odors and other contaminants. In this type of system, you have the rapid mix, flocculation/sedimentation, and filtration.

It’s Important for Water Treatment Plants to Keep Up With Regulations

Regulations on water quality and purification change regularly. At the moment, the EPA has regulations in place for more than 90 contaminants. The public can request that it gets added to the Contaminant Candidate List (CCL). This request list is published at EPA.gov and accepted nominations for additional contaminants at the end of 2018. Verdicts on whether or not the contaminants were added or not are also published on the EPA’s site under Current and Previous CCLs.

The last update for the National Primary Drinking Water Regulations was released in 2009. As more items are added, water filtration plants have to keep up with the changes and make sure their equipment and tests look for those new contaminants. Activated carbon filtration often helps remove some of these new contaminants.

Lakeside Equipment has one piece of equipment that’s an essential part of any water treatment plant. Look into the stainless steel or PES filter cloth screening that’s part of the MicroStar Filter. This final step in water treatment runs your cleaned water through the filter cloth and backwashes any remaining contaminants into a central hopper where it is discharged. It’s an energy efficient step in the final stage of water filtration.

Learn more about the MicroStar Filter and Lakeside Equipment’s other clarification and filtration equipment. Our experts can help you find the right water filtration system at the right price. We’ve been in the water filtration business for more than 90 years and are happy to share our expertise with you. Call 630-837-5640 for more information.