Monthly Archives: March 2022

How Can Automation Help Your Plant Streamline Wastewater Treatment?

Have you ever considered the benefits of automation at your wastewater treatment plant? Streamlining treatment processes is essential in today’s world. Getting water clean and returned to homes, businesses, and bodies of water needs to happen quickly.

Wastewater treatment is an essential industry in the U.S. While it’s hard to imagine running out of water, it’s possible. Changing weather patterns are finding temperatures heating up, and some areas see very little rainfall.

How can the nation protect the one thing people need to survive? Wastewater treatment is one of the most critical steps. Instead of losing valuable water to environmental factors like evaporation, municipalities can clean the water, move it to storage tanks and ponds, and send it back out to homes and businesses for reuse. Automation can help streamline wastewater treatment processes like this.

Parts of the U.S. Face a Water Crisis

So much of a person’s daily routine involves water. Washing hands to lower the risk of disease is only part of it. Showers, toilet flushes, and the water a person needs to stay hydrated all factor into daily water use. The average person uses over 80 gallons of water a day.

You also have factories across the nation that rely on water for operations. An extrusion machine responsible for making things like the brake cables in cars needs water to cool the product to set the plastic coatings properly and prevent ovality or irregularity when it goes onto the spool. A food manufacturing plant uses water to wash food items before packaging, such as a poultry processing plant.

Almost half of the water drawn from freshwater sources is used in the creation of thermoelectric power. This is why it’s crucial to find other ways to generate electricity, such as solar or wind.

Even smaller businesses use a lot of water. Restaurants use a lot of water for sanitization and cooking. A grocery store needs water for cleaning tasks, bakery, deli, and butcher departments, and produce where misters keep vegetables fresh.

Looking at the National Centers for Environmental Information, several states had deficient precipitation levels during 2020. According to the reports, Nevada, New Mexico, Arizona, Utah, and Montana were the lowest.

The Palmer Drought Severity Index Rank listed eight states as the worst in the U.S.: California, Colorado, Montana, New Mexico, North Dakota, Oregon, Utah, and Wyoming.

In the fall of 2021, Lake Mead’s levels were low enough that the U.S. declared a water shortage. Arizona, Mexico, and Nevada all had their apportionments reduced by as much as 18%. This meant homeowners and business owners in dozens of cities and towns must reduce water consumption. One of the most significant effects is on farmers and ranchers who must find other ways to water crops and take care of their livestock.

When primary water sources like Lake Mead experience shortages, the effects can lead to hardship. Cities can overcome these shortages through efficient wastewater treatment plants and industrial wastewater treatment plants. Automation is one way to ensure a plant operates efficiently.

What Happens During Wastewater Treatment

Primary treatment steps in a wastewater treatment plant include screening out items like rocks, sticks, trash, and even animals like mice or rats that may find their way into sewers. Once screened from the wastewater, these items go to a landfill.

Pumps move the remaining wastewater into aeration tanks, where circulation adds oxygen to start the treatment process. Aeration helps oxygenate the wastewater to begin the breakdown of organic matter. Grit like coffee grounds and sand settle to the bottom of the tanks, where it’s removed and taken to compost piles or landfills. Excess water drains from the grit and goes to the next steps in wastewater treatment. The goal is to get as much water out of grit and solids as possible.

You have pumps, blowers, mixers, and motors all working together. They use energy and may need employees carefully monitoring levels of wastewater coming in. With automation, you save money by having technology tracking everything and turning things on and off as needed. Technology matches flow rates, maximizing performance and efficiency.

In sedimentation tanks, the sludge settles and is removed to digesters. Lighter materials like fat and oil rise to the surface, where they can be removed and added to sludge. Some water is added to the digesters, while the rest of it may go through filters to start cleaning any microscopic particles.

The waste in digesters is given time to break down, removing odor and bacteria. It can then go to landfills or be used as a fertilizer. The cleaner water goes into tanks where chemicals like chlorine are added to kill any remaining bacteria. Facilities may use UV lighting to remove excess chlorine before it’s returned to bodies of water or storage tanks for the public water system.

Water samples are drawn and tested throughout the process to collect essential data. It’s a time-consuming process.

Before wastewater can be released to the environment or public water systems, it must meet FDA standards. If it doesn’t and is released anyway, plants face hefty fines. Final water quality is another area where automation can make a difference.

How Can Automation Help?

Your aeration tanks and basins have blowers and pumps that use up to 60% of your plant’s energy. Are yours automated, or do you have employees turning them on and off as needed? Automation streamlines this and helps you avoid mistakes that can become costly if raw sewage is released.

The critical goals of wastewater treatment are to remove bacteria, viruses, and other pollutants and ensure ammonium, phosphate, and nitrogen levels are low before the water is released. Before release, you need to meet pH levels and remove any chemical disinfectants like chlorine. Properly cleaning wastewater requires much attention to water samples and blower rates. If you have automation monitoring the levels and adjusting as needed, you save money.

Plus, incoming wastewater flow rates change from one hour to the next. You might have more water coming in during peak hours before and after work and school and when manufacturing plants operate. When the members of your municipality are cooking meals, taking showers or baths, and doing laundry, the wastewater coming into the plant through sewer lines increases. When people are sleeping or factories are shut down, the flow is minimal.

Instead of having pumps and motors running at the same speeds during the day and night, automation adjusts their speeds to match the flow rates. That’s another one of the ways automation helps streamline your operations.

Talk to Us

How can we help? Lakeside Equipment’s SharpBNR Process Control system allows you real-time monitoring of your plant. Not only does it help improve energy efficiency, but it also works in tandem with your motors to ensure rotors adjust as needed to achieve the optimal oxygen levels for aeration.

Talk to us about SharpBNR Process Control and how it works with your SCADA system to streamline your wastewater treatment plant. Our experts can help you with equipment upgrades that ensure water is cleaned effectively, even if flow rates suddenly increase and put more demand on your equipment’s pumps and motors. We’d love to talk to you about streamlining your plant’s efficiency with automation. Give us a call.

Don’t Wait Until Violations or Compliance Warnings to Upgrade Your Wastewater Treatment Plant

When did you last update your wastewater treatment plant? Have you considered the benefits of upgrading? Some municipalities don’t plan improvements until violations or compliance warnings hit. Save money by making upgrades to your wastewater treatment plant now rather than when it’s too late.

Why would you need to make changes if you haven’t been notified of a violation? One of the biggest reasons is that the guidelines change as studies lead to new information. Guidelines for wastewater treatment change from time to time. It’s up to you to keep up with the changes.

2022 Changes to Final Effluent Guidelines

The EPA’s Final Effluent Guidelines Program was published on January 11, 2021. Already, several changes have been recommended for Preliminary Plan 15. They include:

  • Addressing PFAS discharges in chromium electroplating facilities and operations
  • Altering discharge standards for the meat and poultry industry, particularly focusing on phosphorus and nitrogen
  • Changing the limits for OCPSF (Organic Chemicals, Plastics, and Synthetic Fibers) regarding PFAS
  • Creating Supplemental Rulemaking for Steam Electric Power Generating (coal power plants)
  • Publishing the results of completed studies regarding PFAS in various industries, including canned seafood, explosives, landfills, metal products/machinery, soap/detergent, etc.
  • Studying PFAS discharges from landfills, carpet manufacturers, and textile mills

When guidelines change, industries need to keep up. Does your plant have a wastewater treatment facility to treat water before releasing it to a body of water or sewer? It’s important to make the necessary upgrades to comply with the regulations. If you manage a wastewater treatment facility for your municipality, it’s also essential to make sure you’re meeting current EPA guidelines.

The Clean Waters Act Applies to the Majority of People

In the U.S., any municipality, business, or person is prohibited from discharging pollutants into a body of water. The only exception is a party named on a National Pollutant Discharge Elimination System (NPDES) permit. This permit authorizes the permit holder to release pollutants (up to the specified level).

Wastewater treatment plants have NPDES permits, but they also have rules they must follow. Wastewater is screened to remove things like wrappers, baby wipes, etc. It may go through grinder pumps to break heavier materials. It then goes through grit removal, primary sedimentation, and secondary treatment. In secondary treatment, organic matter is removed using methods like aeration and secondary clarification.

When the water is treated, and bacteria and chemical agents (if used) have done their part, the remaining cleaned water must meet the levels outlined in the permit. There are maximum levels given for the agency’s Priority Pollutant List, which covers pollutants like ammonia nitrogen, arsenic, asbestos, benzene, chloroform, cyanide, lead, mercury, etc. If the wastewater doesn’t meet these levels, problems arise.

What happens if you don’t have an NPDES permit and discharge effluent or other illegal materials? The EPA can fine you up to $16,000 per day, with a cap of $187,500 per discharge.

Fines Can Strain Your Finances

When caught, the fines for compliance warnings and violations can be costly. Here are a few cases and the total fines and penalties that industries and municipalities received.

  1. American Zinc

For years, American Zinc allowed processed wastewater to go into the stormwater stream, releasing excessive levels of cadmium and zinc into Aquashicola Creek. In addition, the company had several air pollution violations. A penalty of $3.3 million was levied against the company.

American Zinc was ordered to implement $4.3 million in upgrades. The order included adding equipment to detect leaks, upgrading their monitoring equipment, and developing a plan to control stormwater.

  1. Churchill Downs

Factories and municipalities are not the only ones to face fines related to improper wastewater disposal. Churchill Downs was fined for years of violations in New Orleans. Over 500 horses are housed in the stables, and the manure and urine in the stables, wash racks, and walkways led to untreated wastewater going into the municipal stormwater system.

As little as half an inch of rain caused manure, urine, horse shampoo, gray water, etc., to travel from the Churchill Downs to storm drains leading to the London Avenue Canal. From there, the untreated sewage ended up in Lake Pontchartrain and the Mississippi River. These events happened over 250 times in six years, leading to close to $2.8 million in civil penalties.

In addition, Churchill Downs must spend an estimated $5.6 million to establish a system that prevents all raw sewage from reaching New Orleans’s stormwater system. This likely means the development of a small wastewater treatment plant at the facility.

  1. The City of Corpus Christie, Texas

Corpus Christie, Texas, is home to six wastewater treatment facilities and over 1,250 miles of sewer pipes. Plus, there are dozens of lift stations. While the city’s wastewater plants have NPDES permits, they were caught exceeding the effluent limits. While it was unintentional, they were fined $1.136 million in penalties.

Some of the problems were caused by pipe blockages and grease, but it also came down to the equipment not keeping up with population growth. The city must clear the blockages, clean all sewer lines, improve maintenance, and better monitor plant operations and capacity. The improvements needed will cost around $600 million and will take 15 years to complete.

  1. Cleveland Cliffs Burns Harbor Facility

The EPA found that this steel mill released ammonia nitrogen and cyanide into the East Branch of the Little Calumet River in Indiana. Fish were dying, and people swimming at nearby beaches were exposed to these toxins. A pump failure at the steel mill’s wastewater treatment plant was blamed.

Civil penalties of just over $3 million were levied, with half of those fines being paid by Indiana. Cleveland Cliffs Burns Harbor Facility also has to install an ammonia-N removal system by 2025 and use a lined storage pond if there is a pump failure in the future.

  1. DuPont

In Orange, Texas, DuPont and Performance Materials NA, Inc. were ordered to pay $3.1 in civil penalties and legal fees for hazardous waste, air, and water pollution. Specific to the Clean Water Act, the facility released wastewater without a proper permit. Pollutants from the wastewater ended up in the Sabine River Basin.

In addition to the fine, DuPont needs to have a third party inspect the wastewater treatment system to ensure it meets the requirements set forth in the permit.

  1. The City of Hattiesburg, Mississippi

In 2020, the EPA fined Hattiesburg $165,000 in civil penalties and $220,000 in a Supplemental Environmental Project after sewer overflows led to violations of the Clean Water Act and the city’s NPDES permit.

In addition to the fines, the city must spend about $14.2 million on improvements by the end of 2024. Required improvements include inspections and repairs to sewer lines and force mains, upgrades in the pump stations, and equipment to monitor flow rates. Plus, authorities also ordered enhanced training for management and workers, grease controls, an emergency response plan, and remote monitoring.

What Can You Do

The best way to avoid fines and penalties is by paying attention to the terms of your permit. Even if you think you meet the regulations, it doesn’t hurt to go back over everything. Are there any limits where your facility often comes close to missing the mark?

Do you perform maintenance regularly? If you find it hard to keep up, one of the first upgrades you should make is to look at the machinery that reduces the need for constant maintenance. Equipment with submerged bearings will be harder to maintain. Stainless steel construction won’t rust or corrode as quickly, which improves longevity.

Since 1928, Lakeside Equipment’s been helping businesses and municipalities meet their goals for clean water. Talk to our experts to learn how to upgrade your municipality’s wastewater treatment plant in ways that improve performance and efficiency while also staying cost-effective.

Unique Discoveries That Are Improving Wastewater Treatment Steps

Wastewater treatment plants fill many roles. The water that’s treated and released to bodies of water must be treated in a way that protects fish, shellfish, and other wildlife. If it goes back into the drinking water supply, it must be safely treated before the public consumes it. It also has to protect the general public who swim in water coming from treatment plants.

The EPA sets water quality standards for all wastewater treatment plants to meet. If a facility fails to do this, it can lead to fines and negative press. For this reason, experts in wastewater continue to look for ways to improve wastewater treatment. With more than 30 billion gallons of water treated every day, things still can slip through the cracks. Here are some recent discoveries that can help return cleaner water to the environment.

Chitosan

When ground, the shells of crabs, lobster, and shrimp create a fibrous substance that binds to things. It’s touted as helping with wound care as it causes the blood to clot. It’s also studied as a means for lowering cholesterol levels in the blood. People with high blood pressure use it as a salt substitute.

The company Tidal Vision is researching the use of chitosan to create a liquid solution that removes metals like iron and copper from stormwater runoff and wastewater. It reduces the amount of waste going into landfills, and it can reduce costs as this is a substance that is thrown away by seafood manufacturers and restaurants every day.

Magnetic Nanosponges

Researchers are studying beneficial magnetic nanosponges in water treatment, especially when treating wastewater in agricultural settings. Microscopic holes allow molecules to travel through the sponge-like structures at record speeds. Not only is this helping with efficient water treatment, but it’s also aiding with the capture of fuel from the wastewater treatment process.

In the study, a 75% mixture of magnetic nanosponges excelled at removing contaminants in the sedimentation tanks and farm pits where the tests were run. Nanosponges speed up that reaction time by 6x, allowing optimal water treatment. This improves efficiency and is more cost-effective than current wastewater filtration steps.

Until now, sponges haven’t had the ideal pore sizes for the split of hydrogen and oxygen, which impacts how well plants can convert the CO2 into fuel that can be used for things like heating a facility. With the use of nanosponges, the optimal pore sizes aid the division, so the structures prove beneficial both at cleaning wastewater and converting the gases to usable fuel.

Microalgae

Stop and think about the results of wastewater treatment, and we’re not talking about the cleaned water that can return to public water supplies or bodies of water. Plants create greenhouse gases, such as methane. Methane is often burned to heat or power plants, but that produces carbon dioxide that’s released into the environment. Carbon dioxide may not smell like methane, but it’s still harmful to the environment.

Researchers in Arizona have been studying the benefits of using microalgae to process these greenhouse gases. The microalgae are in ponds and feed on methane and carbon dioxide that results from wastewater treatment.

As the algae feed on the gases, methane is captured as a more valuable form of biomethane for power and heat. The carbon dioxide is fully ingested and helps the algae multiply. The excess algae are rich in omega-3 fatty acids beneficial in food products for both animals and humans.

Microbial Ecosystems

One area that has been researched for several decades is microbial ecosystems. There are thousands of microbes, and newer discoveries improve water treatment steps. While aeration is one of the most common steps in wastewater, it also uses a lot of energy. As much as 80% of a plant’s operating costs are linked to aeration.

Microbial ecosystems help by eliminating some of the chemical additives and excessive use of aeration. Lowering chemical additives helps lower the amount of nitrogen and phosphorus in wastewater sludge.

In the 1990s, researchers discovered anaerobic ammonium oxidation bacteria (anammox) could convert ammonia in waste and farm runoff to nitrogen gas. While some aeration was still required, the amount was far lower.

The microbes took up space, but that issue was resolved by introducing granular pellets that required 25% less space and helped lower operating costs by as much as 30%. A Dutch town became the first to embrace the microbe pellets for both industrial and residential wastewater, and it was successful in both areas.

Research on microbial ecosystems didn’t stop with that project. A Danish university uncovered a new type of ammonia oxidation bacteria known as comammox in 2015. Comammox was a massive discovery as they could process the ammonia without requiring any oxygen. However, testing is still ongoing to see if they can eliminate the need for aeration in wastewater treatment facilities.

Nanobubbles

A California company specializing in oxygenation is rapidly expanding the use of equipment that creates nanobubbles to aid in water treatment. Moleaer is investing $9 million to work with universities across the country to study all of the benefits and uses of nanobubbles in food manufacturing, wastewater treatment, and agriculture.

While aeration is a critical step in wastewater treatment, most mixers stir and aerate with the bubble sizes you’d expect in water. Nanobubbles are tiny. They’re so little, you cannot see them. In fact, nanobubbles are reportedly more than 2,000 times smaller than a grain of salt. Due to their size, they remain in the water for longer, increasing the amount of oxygen within the water.

A professor at UCLA reported that nanobubbles could transfer oxygen at rates of 85%, which is far greater than the typical average of 2%. When this technology is used, it can reduce the need for chemicals in wastewater treatment and reduce operating budgets.

PHA Creation

Polyhydroxyalkanoates (PHAs) are a polymer that bacteria can produce when they digest sewage. This is an important study as PHA can be converted into biodegradable plastic. A plant in the Netherlands is currently researching the use of bacteria to create PHA bioplastic that can be used in manufacturing in areas where a water-resistant, flame-retardant biodegradable composite is needed, such as construction materials.

SND5

Researchers at the National University of Singapore came across a new strain of bacteria that proved effective at removing nitrogen and phosphorus from raw sewage. The microbe named Thauera sp. strain SND5 was found in a wastewater treatment plant, but it behaved differently, catching Associate Professor He Jianzhong’s attention.

Bacteria are already used in wastewater treatment to purify the water, but most can handle one compound. SND5 was the first bacteria he’d seen that was able to multitask. Because this bacterium can take care of both nitrogen and phosphorus simultaneously, it has the potential of being more effective at a lower cost.

Research is ongoing, and discoveries occur each year. What can wastewater treatment plants do in the meantime? One of the best steps to take is to do a walkthrough of your plant’s equipment to explore the equipment’s age, how often it breaks down or requires maintenance, and what’s driving your plant’s utility costs up.

When you sit down and look at every aspect of your wastewater treatment plant’s operating costs, successes, and failures, it helps you realize where there is room for improvement. That’s when you talk to an expert in wastewater treatment plant equipment and design.

Lakeside Equipment’s experts help you find ways to improve performance, lower costs, and enhance efficiency. Call us to schedule a consultation.

Ten Common Misunderstandings About Storm Runoff and Sewage Treatment Steps

In the early 1900s, poor water quality led to about 100 cases of typhoid fever (a waterborne disease) per 100,000 people. As cities and states started looking into water treatment steps by 1920, the numbers dropped to about 34 cases per 100,000 people. Today, there are no cases of typhoid fever. Wastewater treatment is critical to having clean drinking water.

Even with all of the improvements, there are things people do not understand. One is that storm runoff and sewage treatment are not the same. Here are ten common misunderstandings regarding storm runoff and sewage treatment in the U.S.

Storm Runoff Is Just Rainwater, So It Doesn’t Need to Be Cleaned

When it rains, water that collects in roadways has to go somewhere. Cities and towns have gulleys and ditches where the rainwater goes to divert it to streams and other bodies of water. The runoff travels into city drains and channels that lead to rivers, lakes, and oceans. In a town, you’ll have gulleys and ditches instead.

People often think it’s just rainwater, so it’s clean and won’t harm the bodies of water it ends up in. This is incorrect. Along the way, it picks up motor oil and other automotive fluids that leak from cars traveling on the streets. Dirt, gravel, bark mulch, trash, leaves, grass clippings, and branches end up in it. They can clog the channels and cause back-ups. If there’s no clog, the garbage that the storm runoff picks up travels to the lakes and streams, too.

Cities and Towns Are Equipped for Weird Weather

Strange weather patterns are happening more than before. While wastewater treatment plants and state wastewater districts do what they can to prepare for the unexpected, it’s impossible to predict unusual weather patterns.

For years, the infrastructure has been failing due to older sewer lines, capacity issues, and budgetary concerns. It’s a leading reason that you see cities struggling with flooding and not being designed to handle the additional volume of storm runoff and flooding in wastewater treatment plants. Updating equipment to handle increasing flow rates is essential.

People Have No Impact on Storm Runoff Pollution

There’s another problem with storm runoff. People residing in communities where storm drains exist don’t realize that some of their habits are poisoning the streams and lakes. People may pour their motor oil, cooking oil, or unnecessary cleaners into a storm drain, and those contaminants end up in the bodies of water. Washing cars in a driveway leads to various chemicals traveling to streams, rivers, lakes, ponds, and oceans.

In the winter months, cities and towns that treat roads with salt send the melted snow and salt into nearby bodies of water. Metals from rusting vehicles and vehicle parts also make their way into storm drains and ditches.

Storm Runoff Always Goes to a Wastewater Treatment Plant

Another misconception is that stormwater goes through a wastewater treatment plant along with sewer water. This is not true. Some cities have plants that treat both, but it’s not common.

Storm runoff travels into storm drains that connect to storm sewers leading to waterways in most areas and never gets treated. In rural areas, there are usually ditches along roadways that connect to culverts that allow the storm runoff to travel to a nearby stream.

Rural Storm Runoff Isn’t as Bad as Urban Runoff or Industrial Wastewater

People often think that the runoff in rural areas isn’t as harmful as storm runoff in cities or industrial areas. This is incorrect. One of the worst pollutants in storm runoff is the fertilizer and manure used on farms and lawn treatments in residential areas.

Nutrients found in manure and fertilizer, such as phosphorus and nitrogen, travel to streams and eventually reach lakes. There, they feed algae blooms that can be harmful to people and animals.

Water Treatment Plants Are Always Designed To Handle Industrial Wastewater

A wastewater treatment plant does treat water from residences and businesses. Sometimes, an industrial manufacturer or company needs to install a wastewater treatment plant to pre-treat water before it goes to the sewers.

An on-site wastewater treatment plant helps a business recover and reuse water, reducing the volume of water drawn from municipal water supplies. Plus, it helps reduce the strain on area wastewater treatment plants. As industrial settings may create wastewater with heavier volumes of toxic chemicals, pre-treatment is critical.

Sewage Treatment Takes Care of All Pollutants

Sewage treatment doesn’t take care of all pollutants. The EPA sets guidelines that wastewater treatment plants meet, but some pharmaceuticals still get through. One study found that medications like birth control pills were getting through wastewater treatment processes and making their way to lakes, rivers, and oceans, affecting the reproductive health of fish.

Grinder Pumps End Issues With Everything People Flush

When people flush items they believe are flushable, it can be problematic to a wastewater treatment plant. Though it says “flushable” on the packaging, Flushable wipes do not dissolve in water. They get caught up on equipment at a treatment facility, and they can also create clogs in pipes. The same is true of “flushable” cat litter. Throw them out!

Some facilities add grinder pumps to help break down these items and prevent clogs. Grinder pumps can help, but it’s still best if people stop putting them into sewer systems and septic tanks.

There’s Little Home and Business Owners Can Do to Stop Pollution

Homeowners and business owners can do a lot to help stop water pollution. Carefully consider the products used for cleaning items like toilets, sinks, dishes, clothing, etc. Avoid items that contain harsh chemicals, phosphorus, etc. Aim for environmentally-friendly cleaning products.

Watch what you flush down a toilet. Toilet paper that’s two- or three-ply takes longer to break down. If you prefer thicker toilet paper, remember that it may clog your pipes. If you have a septic system, ask your septic company what they recommend. Many will tell you never to flush anything other than one-ply.

Do not put oils, especially cooking oil, down the drain. Avoid putting coffee grounds and bones down the sink if you use a grinder pump or garbage disposer.

Wastewater Treatment Plants Always Handle Heavy Loads

When wastewater and storm runoff are treated together in a wastewater treatment plant, the system must be capable of handling surges. You could have staff constantly watching for rising levels of sewer water, but it’s wiser to invest in wastewater processing equipment designed to address these sudden increases.

A SharpBNR Process Control is an example. If there’s a surge, the computerized system adjusts aeration and other aspects of wastewater treatment to ensure the water is treated appropriately before it’s released.

Having equipment that can handle increased flow rates is also worth considering. If your plant is upgraded to allow for excess capacity, it’s ready to take on heavy loads. Otherwise, raw sewage is released to prevent flooding within the wastewater treatment plant, which can damage the environment and lead to fines.

Talk to Lakeside Equipment’s experts in wastewater treatment equipment to ensure your plant is equipped for increases in sewer water. When you have considered for increased caused by changing weather patterns or excessive use from area residents, you’re protected from having to release raw sewage while also helping the environment. Call us to learn more about maximizing your plant’s effective wastewater treatment processes.