Monthly Archives: July 2021

Most Effective Commercial Sewage Grinder Pump System

A sewage grinder pump grinds the matter in wastewater to help it flow from a low spot to sewer lines. In a commercial setting, such as a restaurant, the grinder pump would work like a garbage disposal to grind up foods and items that go down the drain. The smaller pieces travel through pipes with a lower risk of creating a clog that could damage lines.

A grinder pump system handles things that get flushed down the toilet that shouldn’t be. If you have clients that flush baby wipes even though they do not dissolve, a grinder pump helps prevent clogs. Patrons may not realize that flushing a tampon applicator is terrible news for sewer lines. Your kitchen staff can put food scraps down the sink without causing blockages.

Meanwhile, the pump ensures the wastewater makes it up slopes and from low points. Imagine your restaurant is at the bottom of a hill, but the wastewater district’s pump station is at the top of the incline. If your building has any basement-level kitchens, laundry rooms, or bathrooms, a grinder pump helps process the solid waste with the wastewater. From there, the pump pushes it up and to the sewer lines.

Pumps push the water so that it moves in the right direction and don’t backflow into your sinks, toilets, and drains in the lowest point of your business, costing you hundreds or thousands of dollars to sanitize and clean surfaces.

Tips for Choosing Sewage Grinder Pumps

Choosing the best commercial sewage grinder pumps comes down to your needs. A sewage grinder pump needed in a large building with multiple office spaces will be far different from a pump required in a food processing company. Restaurants, bars, and hotels are other businesses that benefit from commercial sewage grinder pumps. These are the things you need to consider when you start researching your options.

#1 – The Motor’s Horsepower

A commercial sewage grinder pump will be different from a sewage grinder pump you’d use at home. It handles more wastewater, so the pump needs to be equipped to handle the higher capacity. Many residential grinder pumps range from 0.5 HP to 1 HP and have an RPM of around 3,000. A commercial grinder pump has a more powerful motor that’s often 2 HP or higher, and the RPMs usually are in the area of 3,500.

In a building with multiple bathrooms or kitchens, this is important. A pump with less power is more likely to become overwhelmed and need repairs or replacement. You have to make sure you’re installing a pump that can meet your wastewater demands. The right size pump lowers your maintenance and repair costs over time.

#2 – The Grinder’s Revolutions Per Minute (RPM)

Higher RPMs help the pump grind solid materials into a slurry. The faster it does this, the better it is to prevent backups or clogs. If you own a brewery with its own small wastewater treatment plant, you’d need a grinder pump that can handle any grains or hops that make it through filtration.

#3 – The Max Flow Rate

Check the pump’s max flow rate. If your business has upwards of 100 gallons of wastewater each minute, you want a pump that handles that much sewage. You’ll know this by the max flow rate that’s given in terms of gallons per hour. If it can handle 6,340 gallons per hour, it would manage an average of over 100 gallons per minute.

#4 – The Pump’s Construction

How does the pump work? For a commercial sewage grinder pump, you may need a control panel setup. Otherwise, systems use a float to turn the pump on and off when needed.

Check the grinder pump’s discharge design. Most have a vertical pipe that comes out of the top. A vertical design is often ideal. Ensure you have this type over a horizontal discharge requiring a 90-degree pipe section for the wastewater to travel upward.

You also need to look at the type of materials the grinder pump is made from. Many have cast iron bodies with stainless steel cutters to grind the materials into small pieces. You want a clog-free design on the impeller. Look for oil-filled, sealed motors that don’t require a lot of maintenance.

#5 – Head Height

Look at the head height. Head height is the distance (vertically) from the lowest level of the wastewater at the pump to the high point where it exits the building for sewer lines. Sewer lines usually run from the building into the sewers at the lowest level of a building. In some constructions, this means you’re sending water from the top floor to the basement and out of the building to the sewers.

If the head height offers a lift of 20 feet, but your basement or lowest area is 30 feet below the drainpipe, the head height is not sufficient. The pump needs to be powerful enough to push the water up and away from your building. If the head height is lower, the lift will not be as great, so it will struggle to move the wastewater.

Know Your Local and State Codes

A commercial sewage grinder pump system may even be required in your city or district. And it has to follow the rules outlined in city or state legislation. For example, where sewage pumps are necessary for “backwater protection” in a Wisconsin business, the grinder pump has to have opening and discharge piping diameters of no less than 1.25 inches.

It’s up to you to make sure you’re meeting those laws. The best way to ensure you comply is by working with an expert in wastewater equipment and design. Meeting your budget is essential, but it’s not always the best path forward if it means you’ll be fined or shut down for ignoring these codes.

Have You Considered Screw Pumps?

If your company is larger, screw pumps may suit your needs. There are both open and enclosed screw pumps available to help move wastewater up slopes. No matter which you select, they’re designed to avoid the need to grind solids as they do not clog.

Open screw pumps can handle 22 to 40 degrees inclines, and they do not clog, so screens are not needed. A benefit to the open screw pump is that it can handle anywhere from 90 gallons per minute to 55,000 gallons per minute with lifts of up to 50 feet per stage. Maintenance costs are low, too.

You also have enclosed screw pumps where the screw pump is hidden inside a steel tube. Type C enclosed screw pumps move anywhere from 540 to 35,000 gallons per minute at lifts of up to 60 feet. A Type S enclosed screw pump handles up to 10,000 gallons per minute with a lift of up to 30 feet. You can talk to a screw pump expert to learn more about the pros and cons of these systems when compared to your needs.

Lakeside Equipment Corporation has been a leader in water purification equipment and designs for more than 90 years. We’ve been designing screw pump systems since 1969 and have the expertise you need to ensure you meet codes. Call our customer service team at 630-837-5640 to learn more about using screw pumps for your sewage pump needs.

Does Wastewater Go Into the Ocean?

Have you ever wondered how much wastewater ends up in the ocean? Concerns grew when Japan announced they wanted to release 1.25 million tons of wastewater from the Fukushima Daiichi Nuclear Power Plant into the Pacific Ocean. The country’s prime minister promised the wastewater would be treated, but there are still concerns about the impact on the aquatic life and fishing industry.

The Nature Conservancy released a shocking report in 2020 that alarmed some people. The environmental organization reported that the percentage of untreated wastewater released into oceans and seas worldwide was as high as 80%. In the Caribbean alone, it’s as high as 85%.

Is it concerning that this amount of untreated wastewater enters the oceans and seas around the world? Yes, but it’s also a good thing as it’s a correctable problem. It’s something that people can work on changing. The U.S. already has many measures in place to keep this from happening, but it’s not a perfect system in the U.S. either.

Cruise ships and other large vessels can dump raw sewage into the ocean or sea as long as the ship is more than three miles away from the coast. Some cruise lines have onboard wastewater treatment systems to help reduce pollution, but not all of them do.

There’s also the issue of microplastics making their way into the waterways from wastewater treatment plants. A British study found that high quantities of microplastics were found downstream of six wastewater treatment plants. Even though the wastewater had been treated, microplastics remained behind. Additives that can remove the microplastics affect fish, but the microplastics are equally harmful as they hold onto chemicals that harm fish. Plastic pollution in wastewater is one topic being focused on during Stockholm’s World Water Week in August.

Could steps be taken to ensure only clean water is released into our oceans, seas, and rivers that feed into saltwater? It’s possible, and the U.S. already takes some steps to make sure wastewater meets a rigid set of standards.

The Role of the Clean Water Act in the U.S.

Part of the Environmental Protection Agency’s job is to issue permits to wastewater districts around the country. Through the National Pollutant Discharge Elimination System, municipal wastewater treatment plants apply for permits to operate. Once approved, the plant has strict guidelines to follow regarding the allowable levels of different contaminants found in the water. Failing to meet the guidelines can lead to hefty fines.

Before wastewater treatment plants can release treated wastewater, they must meet the standards outlined in the Clean Water Act and the permit granted to that community’s wastewater district. The EPA keeps a Priority Pollutant List that contains dozens of pollutants that plants must remove from wastewater before it’s released to a river, stream, pond, lake, ocean, or sea. On this list are things like arsenic, asbestos, benzene, copper, lead, etc. Bacteria and viruses also must be removed.

Additional steps must be taken before wastewater goes into saltwater. For example, alpha-Endosulfan must be less than 0.034 or 0.0087 micrograms per liter. Arsenic must be no more than 36 or 69 micrograms per liter. The chlorine used to kill bacteria must be lowered to 7.5 or 13 micrograms per liter of treated wastewater before it’s released. The Recommended Water Quality Criteria contains the rules to freshwater and wastewater that treatment plants must follow.

Leaks and Problems That Threaten Our Oceans

How often do wastewater treatment plants leak into the ocean? It occurs more often than you might think.

In April, experts found a leak at a wastewater reservoir in Tampa, Florida. Around 480 million gallons of wastewater had to be removed due to the threat of flooding after one leak in a containment wall was discovered. The Piney Point waste station had closed down 20 years earlier following a bankruptcy. Had the reservoir’s walls burst, it would have flooded the area and made its way to the ocean.

A Seattle wastewater treatment plant leaked raw sewage at the end of April. Days later, the same thing happened, making two sewage spills happen in Puget Sound. In the first spill, around 1,700 gallons of untreated wastewater went into Elliott Bay. The second spill leaked approximately 880,000 gallons. Both of these spills were caused when a backup power supply failed during routine testing and maintenance. This wasn’t the first time this plant has had issues. Another spill happened in January and involved 11 million gallons of untreated wastewater.

Quincy, Massachusetts, faced a lawsuit filed by the EPA after untreated sewage and wastewater leaked into Boston Harbor in 2019. As part of the settlement, the city agreed to invest over $100 million in upgrades and repairs of its wastewater treatment plant.

Another city slapped with a lawsuit was Sunnyvale, California. Lawyers for the city requested the charges be dismissed, but a federal court judge ruled against them. In the end, the city was fined $187,000 because close to 300,000 gallons of wastewater leaked into San Francisco Bay. The spill occurred due to antiquated piping that is more than 100 years old in some areas.

Back in 2020, Portland, Maine, also dealt with a spill during a power failure. The exact amount of untreated wastewater that went into Casco Bay is unknown as the computer system also went down in the power outage. It’s estimated that around 4 million gallons ended up in the ocean. That was the second leak in two years.

Two dozen New Jersey communities were given four extra months to develop better wastewater treatment plans to stop raw sewage spills during heavy rains. The communities’ wastewater treatment plants often end up spilling wastewater into the ocean during a storm, and the EPA demanded new Long Term Control Plans be filed. The pandemic led to a four-month delay, but those cities and towns had to have plans in place and came up with a plan that would cost around $3.5 billion in infrastructure improvements.

In many of these recent leaks, outdated piping and wastewater treatment plant equipment were to blame. It’s essential to check backup generators regularly and test equipment. If piping or equipment is getting old, it’s time to look into replacing systems. Repairs work for a time, but a complete replacement can help lower energy costs, saving money in the long run.

How Can Your Wastewater District Help Keep Untreated Wastewater Out of the Ocean?

If wastewater treatment plants located near oceans make sure their equipment meets the current demand, it lowers the risk of untreated wastewater reaching the saltwater. Have a qualified company look at your plant’s design and make sure your equipment can meet heavy loads.

Heavy loads include unexpected amounts of runoff during a storm. When families use more water in the morning before getting to work or return from work and have dishes to wash and laundry to run, it increases the amount of wastewater entering the sewer system. This puts a burden on the equipment if the system isn’t designed for a sudden rush of sewage.

Towns and cities continue to grow. If your wastewater treatment plant was designed decades ago, it might not be operating efficiently. A small investment in new pumps, automated screening, automated process controls, and upgraded grit collection makes a big difference.

Lakeside Equipment has experts ready to help you make sure your wastewater treatment plant is doing everything possible to meet and exceed the requirements needed to ensure you’re releasing clean water into the ocean. Give us a call to learn more.