Monthly Archives: June 2019

Don’t Update Your Municipal Wastewater Treatment Plan Until You Read These Tips

The Federal Water Pollution Control Act changed how wastewater discharge was handled. The goal was to help keep biological and chemical contaminants out of U.S. waterways. Over the years, changes were made. They included:

  • 1977, 1981, and 1987 saw amendments made after the original amendments in 1972.
  • Secondary treatment regulations were enacted in the mid-1970s and changed in 1985.
  • The National Pretreatment Program Rule came out in 1978.
  • A National Municipal Policy was enacted in 1984.
  • Stormwater rules came out in 1990 and were updated in 1999.
  • Rules regarding the use and disposal of sludge came out in 1993 and raw discharge came to an end by 1996.
  • The Federal Clean Water Action Plan came out in 1998.

Each time the rules change, municipal water treatment plants need to make sure they can meet the new guidelines and rules. The U.S. EPA says that many wastewater and treatment facilities have outdated equipment that requires repairs or replacement.

It’s getting harder for wastewater treatment plants to keep up with the growing population and changes to wastewater pollutants. It’s estimated that 33% of new developments require systems such as septic systems. It’s the only way states can keep up with the growth and spread from cities with wastewater treatment plants.

To make sure they meet the current laws and regulations, make sure your municipal water treatment plans are kept up-to-date. Before you make changes, read these tips to make sure you’re making the right decisions.

How Old Is Your Equipment?

It does cost a lot of money to replace the equipment in a wastewater treatment plant. That said, how much are you spending on repairs each year? Are you able to keep up with the demand? Has your equipment failed and created spills that led to fines?

While it can cost money to purchase and install new wastewater equipment, you can end up saving money. You won’t pay as much in emergency maintenance. It will cost less to run the equipment and production increases. In little time, you’ll recoup the money you’ve spent.

Can You Meet the Growing Population?

In your municipality, are you able to meet the needs of a growing population? If not, it’s time to expand your plant. You don’t want your wastewater treatment plant to become overloaded. When you expand, it may be worthwhile to build a system that’s larger than you need. This accounts for future growth, too.

If you can’t expand due to a lack of space, you can look for machines and technologies that increase capacity without taking up more space. For example, Lakeside’s H-PAC system is designed to take up less space while also reducing operating and engineering costs. You’ll be able to do more without having to build additions and buy up land for the expansion.

Energy Efficiency is an Important Factor

It’s estimated that water treatment plants and the water industry use as much as 4% of the nation’s energy. With demands for better wastewater treatment plans, there are also concerns over the cost of electricity. The EPA estimates that up to 40% of a municipality’s budget is for the wastewater treatment plant’s electricity. Public water systems usage of electricity accounts for as much as 80% of a municipality’s budget.

To keep from blowing a budget, there’s a need for wastewater treatment plans to look at the equipment that reduces operating costs. Water treatment is going to use energy. You have pumps and equipment using electricity 24/7. You can do your part by looking into equipment that can do the job correctly for the lowest operating costs.

How Much of a Hassle Do You Face if the Regulations Change Again?

Think about the last time the regulations shifted. Were you able to meet the changing regulations with ease or was it a struggle? Taxpayers often balk when it comes to increasing town and city budgets by a large percentage, so you have to consider their ability to pay more in taxes, too. Upgrading equipment is one solution, but you might be able to make improvements with some modifications to your existing plan or by modifying your water treatment plant’s buildings. One of the easiest ways to decide is by working with professionals who are ready to help you find economical solutions.

Lakeside Equipment specializes in the design and installation of water purification systems for companies and municipalities. We also help you find the parts you need for your older equipment. With more than 90 years in the industry, you can trust Lakeside to find you the best solutions for your water treatment plan.

Let us know more about your goals. We can help you come up with the best plan for your budgetary needs. Give us a call today at 630-837-5640.

Is Tap Water in the United States Safe?

The media has brought a lot of attention to the situation Flint, Michigan, residents face with unclean drinking water. It has many wondering if the tap water in the U.S. is safe. Yes, it is. Since the discovery of lead in Flint’s water, replacement of lead and galvanized steel water lines has been an ongoing process. More than a dozen people were also charged with causing or adding to the water crisis.

The truth is that the U.S. has about 155,000 public water systems. Each one undergoes regular testing to ensure water quality. Water quality in the U.S. is outstanding thanks to laws and regulations that have been enacted or improved upon since the 1970s. Here’s a closer look at some of these improvements and how water becomes safe for drinking.

The History of Public Water Systems

The nation’s first water system came about in the 1770s. Hans Christopher Christiansen helped change the history of water systems by creating a public water system in Bethlehem, Pennsylvania.

By the end of the 1700s, Providence, Rhode Island, and New York City joined the list. Rhode Island brought in water deliveries from private companies. New York City had used private wells, but those polluted wells lost favor and created the Manhattan Company for public water. It would take until 1842 that NYC started tapping into the Croton River for water supplies.

As the years passed, it became clear that water was a leading reason for the spread of disease. By the end of the 1800s, cities were using sand filters or chemicals to clean water. The first drinking water standards came out in 1914. The Service Drinking Water Standards set limits on the number of bacteria allowed in water supplies. Within a year, chlorine was being used to disinfect water.

With the change to water quality, diseases linked to drinking water sharply declined. WWII came and brought about the use of organic chemicals that were making it into water sources. The Safe Drinking Water Act passed in 1974 and required that public water sources be tested to ensure contaminants fell below the levels required by the EPA.

Steps Taken to Bring Clean Water to Homes

The Safe Drinking Water Act requires water to be tested regularly. Water tests look for more than 90 items. If the contaminants are not lower than the EPA or state’s minimum standards, the water system fails and the public is told to stop using the water until the problem is found and resolved. Those tests look for things like:

  • Bacteria – E-coli, fecal coliform, and legionella are a few that are tested.
  • Disinfection chemicals – Examples are bromate (may cause cancer) or chlorite (increases the risk of anemia)
  • Inorganic chemicals – Many are checked and include things like arsenic, cyanide, and lead
  • Organic chemicals – Examples are Benzene (may cause anemia) and PCBs (increases the risk of cancer)
  • Radionuclides – Cancer-causing materials like uranium

Multiple steps are taken to bring clean water to a home or business. It starts with the water source. That water source could be a reservoir, river, lake, or pond. Water is drawn from the water source to the water treatment plant. Screw pumps control the rate at which water enters a water treatment plant. Once the water is at the plant, several steps take place.

#1 – Screening

Screening is a process where larger items like leaves, trash, sticks, etc. are filtered and removed using a screen rake. Those items can then be composted or sent to a landfill. It’s an important step as larger items could damage equipment if it’s not screened and removed.

#2 – Clarification/Flocculation

Clarification systems continue the filtration process to bring you to clean water. Sludge falls to the bottom of the tank where a scraper pushes it to the sludge sump where it can be pumped out.

For solids that float the surface, such as oils, skimmers at the surface of the water take care of those. Chemical additives act as a binder to get these materials to clump together in a process known as flocculation. Flocculation paddles mix the chemicals with the water to ensure it’s mixed well.

#3 – Disinfection

Disinfection is the final step. For any bacteria or microorganisms that survived the other steps, chemicals like chlorine are added to kill them off. UV lighting and reverse osmosis systems can also help disinfect the water. From there, it goes into storage tanks or to homes and businesses.

Choosing the Right Water Treatment System Requires Experience

Lakeside Equipment started helping cities and towns create water purification systems back in 1928, long before the government passed the Safe Water Drinking Act. That’s a long history in the business of water treatment system design and installation.

Today, Lakeside Equipment assists with the design, installation, and repairs of water treatment systems in North America. The single goal of providing clean, safe water has never changed. Call us at 630-837-5640 to discuss your water treatment project.